MBZUAI, LRE
Abstract:Zero-shot diffusion posterior sampling offers a flexible framework for inverse problems by accommodating arbitrary degradation operators at test time, but incurs high computational cost due to repeated likelihood-guided updates. In contrast, previous amortized diffusion approaches enable fast inference by replacing likelihood-based sampling with implicit inference models, but at the expense of robustness to unseen degradations. We introduce an amortization strategy for diffusion posterior sampling that preserves explicit likelihood guidance by amortizing the inner optimization problems arising in variational diffusion posterior sampling. This accelerates inference for in-distribution degradations while maintaining robustness to previously unseen operators, thereby improving the trade-off between efficiency and flexibility in diffusion-based inverse problems.
Abstract:Diffusion models have emerged as powerful priors for image editing tasks such as inpainting and local modification, where the objective is to generate realistic content that remains consistent with observed regions. In particular, zero-shot approaches that leverage a pretrained diffusion model, without any retraining, have been shown to achieve highly effective reconstructions. However, state-of-the-art zero-shot methods typically rely on a sequence of surrogate likelihood functions, whose scores are used as proxies for the ideal score. This procedure however requires vector-Jacobian products through the denoiser at every reverse step, introducing significant memory and runtime overhead. To address this issue, we propose a new likelihood surrogate that yields simple and efficient to sample Gaussian posterior transitions, sidestepping the backpropagation through the denoiser network. Our extensive experiments show that our method achieves strong observation consistency compared with fine-tuned baselines and produces coherent, high-quality reconstructions, all while significantly reducing inference cost. Code is available at https://github.com/YazidJanati/ding.