Abstract:When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.
Abstract:Big data has remarkably evolved over the last few years to realize an enormous volume of data generated from newly emerging services and applications and a massive number of Internet-of-Things (IoT) devices. The potential of big data can be realized via analytic and learning techniques, in which the data from various sources is transferred to a central cloud for central storage, processing, and training. However, this conventional approach faces critical issues in terms of data privacy as the data may include sensitive data such as personal information, governments, banking accounts. To overcome this challenge, federated learning (FL) appeared to be a promising learning technique. However, a gap exists in the literature that a comprehensive survey on FL for big data services and applications is yet to be conducted. In this article, we present a survey on the use of FL for big data services and applications, aiming to provide general readers with an overview of FL, big data, and the motivations behind the use of FL for big data. In particular, we extensively review the use of FL for key big data services, including big data acquisition, big data storage, big data analytics, and big data privacy preservation. Subsequently, we review the potential of FL for big data applications, such as smart city, smart healthcare, smart transportation, smart grid, and social media. Further, we summarize a number of important projects on FL-big data and discuss key challenges of this interesting topic along with several promising solutions and directions.
Abstract:Federated learning (FL) is a distributed model for deep learning that integrates client-server architecture, edge computing, and real-time intelligence. FL has the capability of revolutionizing machine learning (ML) but lacks in the practicality of implementation due to technological limitations, communication overhead, non-IID (independent and identically distributed) data, and privacy concerns. Training a ML model over heterogeneous non-IID data highly degrades the convergence rate and performance. The existing traditional and clustered FL algorithms exhibit two main limitations, including inefficient client training and static hyper-parameter utilization. To overcome these limitations, we propose a novel hybrid algorithm, namely genetic clustered FL (Genetic CFL), that clusters edge devices based on the training hyper-parameters and genetically modifies the parameters cluster-wise. Then, we introduce an algorithm that drastically increases the individual cluster accuracy by integrating the density-based clustering and genetic hyper-parameter optimization. The results are bench-marked using MNIST handwritten digit dataset and the CIFAR-10 dataset. The proposed genetic CFL shows significant improvements and works well with realistic cases of non-IID and ambiguous data.
Abstract:The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distributed networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems play a significant role in ensuring security and privacy of such devices. Machine Learning and Deep Learning with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardised due to the need of storing and communicating data to centralized server. On the contrary, federated learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research.
Abstract:Cash payment is still king in several markets, accounting for more than 90\ of the payments in almost all the developing countries. The usage of mobile phones is pretty ordinary in this present era. Mobile phones have become an inseparable friend for many users, serving much more than just communication tools. Every subsequent person is heavily relying on them due to multifaceted usage and affordability. Every person wants to manage his/her daily transactions and related issues by using his/her mobile phone. With the rise and advancements of mobile-specific security, threats are evolving as well. In this paper, we provide a survey of various security models for mobile phones. We explore multiple proposed models of the mobile payment system (MPS), their technologies and comparisons, payment methods, different security mechanisms involved in MPS, and provide analysis of the encryption technologies, authentication methods, and firewall in MPS. We also present current challenges and future directions of mobile phone security.
Abstract:The application of remaining useful life (RUL) prediction has taken great importance in terms of energy optimization, cost-effectiveness, and risk mitigation. The existing RUL prediction algorithms mostly constitute deep learning frameworks. In this paper, we implement LSTM and GRU models and compare the obtained results with a proposed genetically trained neural network. The current models solely depend on Adam and SGD for optimization and learning. Although the models have worked well with these optimizers, even little uncertainties in prognostics prediction can result in huge losses. We hope to improve the consistency of the predictions by adding another layer of optimization using Genetic Algorithms. The hyper-parameters - learning rate and batch size are optimized beyond manual capacity. These models and the proposed architecture are tested on the NASA Turbofan Jet Engine dataset. The optimized architecture can predict the given hyper-parameters autonomously and provide superior results.
Abstract:Internet of Things (IoT) and related applications have successfully contributed towards enhancing the value of life in this planet. The advanced wireless sensor networks and its revolutionary computational capabilities have enabled various IoT applications become the next frontier, touching almost all domains of life. With this enormous progress, energy optimization has also become a primary concern with the need to attend to green technologies. The present study focuses on the predictions pertinent to the sustainability of battery life in IoT frameworks in the marine environment. The data used is a publicly available dataset collected from the Chicago district beach water. Firstly, the missing values in the data are replaced with the attribute mean. Later, one-hot encoding technique is applied for achieving data homogeneity followed by the standard scalar technique to normalize the data. Then, rough set theory is used for feature extraction, and the resultant data is fed into a Deep Neural Network (DNN) model for the optimized prediction results. The proposed model is then compared with the state of the art machine learning models and the results justify its superiority on the basis of performance metrics such as Mean Squared Error, Mean Absolute Error, Root Mean Squared Error, and Test Variance Score.
Abstract:Generally, the risks associated with malicious threats are increasing for the IIoT and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices. Thus, anomaly-based intrusion detection models for IoT networks are vital. Distinct detection methodologies need to be developed for the IIoT network as threat detection is a significant expectation of stakeholders. Machine learning approaches are considered to be evolving techniques that learn with experience, and such approaches have resulted in superior performance in various applications, such as pattern recognition, outlier analysis, and speech recognition. Traditional techniques and tools are not adequate to secure IIoT networks due to the use of various protocols in industrial systems and restricted possibilities of upgradation. In this paper, the objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network. In the first phase, SVM and Naive Bayes are integrated using an ensemble blending technique. K-fold cross-validation is performed while training the data with different training and testing ratios to obtain optimized training and test sets. Ensemble blending uses a random forest technique to predict class labels. An Artificial Neural Network (ANN) classifier that uses the Adam optimizer to achieve better accuracy is also used for prediction. In the second phase, both the ANN and random forest results are fed to the model's classification unit, and the highest accuracy value is considered the final result. The proposed model is tested on standard IoT attack datasets, such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT. The highest accuracy obtained is 99%. The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.
Abstract:Electricity is one of the mandatory commodities for mankind today. To address challenges and issues in the transmission of electricity through the traditional grid, the concepts of smart grids and demand response have been developed. In such systems, a large amount of data is generated daily from various sources such as power generation (e.g., wind turbines), transmission and distribution (microgrids and fault detectors), load management (smart meters and smart electric appliances). Thanks to recent advancements in big data and computing technologies, Deep Learning (DL) can be leveraged to learn the patterns from the generated data and predict the demand for electricity and peak hours. Motivated by the advantages of deep learning in smart grids, this paper sets to provide a comprehensive survey on the application of DL for intelligent smart grids and demand response. Firstly, we present the fundamental of DL, smart grids, demand response, and the motivation behind the use of DL. Secondly, we review the state-of-the-art applications of DL in smart grids and demand response, including electric load forecasting, state estimation, energy theft detection, energy sharing and trading. Furthermore, we illustrate the practicality of DL via various use cases and projects. Finally, we highlight the challenges presented in existing research works and highlight important issues and potential directions in the use of DL for smart grids and demand response.
Abstract:Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era. Nowadays smart machines and smart factories use machine learning/deep learning based models for incurring intelligence. However, storing and communicating the data to the cloud and end device leads to issues in preserving privacy. In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models. Integrating FL in IIoT ensures that no local sensitive data is exchanged, as the distribution of learning models over the edge devices has become more common with FL. Therefore, only the encrypted notifications and parameters are communicated to the central server. In this paper, we provide a thorough overview on integrating FL with IIoT in terms of privacy, resource and data management. The survey starts by articulating IIoT characteristics and fundamentals of distributive and FL. The motivation behind integrating IIoT and FL for achieving data privacy preservation and on-device learning are summarized. Then we discuss the potential of using machine learning, deep learning and blockchain techniques for FL in secure IIoT. Further we analyze and summarize the ways to handle the heterogeneous and huge data. Comprehensive background on data and resource management are then presented, followed by applications of IIoT with FL in healthcare and automobile industry. Finally, we shed light on challenges, some possible solutions and potential directions for future research.