Abstract:Interconnection studies require solving numerous instances of the AC load or power flow (AC PF) problem to simulate diverse scenarios as power systems navigate the ongoing energy transition. To expedite such studies, this work leverages recent advances in quantum computing to find or predict AC PF solutions using a variational quantum circuit (VQC). VQCs are trainable models that run on modern-day noisy intermediate-scale quantum (NISQ) hardware to accomplish elaborate optimization and machine learning (ML) tasks. Our first contribution is to pose a single instance of the AC PF as a nonlinear least-squares fit over the VQC trainable parameters (weights) and solve it using a hybrid classical/quantum computing approach. The second contribution is to feed PF specifications as features into a data-embedded VQC and train the resultant quantum ML (QML) model to predict general PF solutions. The third contribution is to develop a novel protocol to efficiently measure AC-PF quantum observables by exploiting the graph structure of a power network. Preliminary numerical tests indicate that the proposed VQC models attain enhanced prediction performance over a deep neural network despite using much fewer weights. The proposed quantum AC-PF framework sets the foundations for addressing more elaborate grid tasks via quantum computing.
Abstract:Variational quantum approaches have shown great promise in finding near-optimal solutions to computationally challenging tasks. Nonetheless, enforcing constraints in a disciplined fashion has been largely unexplored. To address this gap, this work proposes a hybrid quantum-classical algorithmic paradigm termed VQEC that extends the celebrated VQE to handle optimization with constraints. As with the standard VQE, the vector of optimization variables is captured by the state of a variational quantum circuit (VQC). To deal with constraints, VQEC optimizes a Lagrangian function classically over both the VQC parameters as well as the dual variables associated with constraints. To comply with the quantum setup, variables are updated via a perturbed primal-dual method leveraging the parameter shift rule. Among a wide gamut of potential applications, we showcase how VQEC can approximately solve quadratically-constrained binary optimization (QCBO) problems, find stochastic binary policies satisfying quadratic constraints on the average and in probability, and solve large-scale linear programs (LP) over the probability simplex. Under an assumption on the error for the VQC to approximate an arbitrary probability mass function (PMF), we provide bounds on the optimality gap attained by a VQC. Numerical tests on a quantum simulator investigate the effect of various parameters and corroborate that VQEC can generate high-quality solutions.