Abstract:Quantum magnetic sensing based on spin systems has emerged as a new paradigm for detecting ultra-weak magnetic fields with unprecedented sensitivity, revitalizing applications in navigation, geo-localization, biology, and beyond. At the heart of quantum magnetic sensing, from the protocol perspective, lies the design of optimal sensing parameters to manifest and then estimate the underlying signals of interest (SoI). Existing studies on this front mainly rely on adaptive algorithms based on black-box AI models or formula-driven principled searches. However, when the SoI spans a wide range and the quantum sensor has physical constraints, these methods may fail to converge efficiently or optimally, resulting in prolonged interrogation times and reduced sensing accuracy. In this work, we report the design of a new protocol using a two-stage optimization method. In the 1st Stage, a Bayesian neural network with a fixed set of sensing parameters is used to narrow the range of SoI. In the 2nd Stage, a federated reinforcement learning agent is designed to fine-tune the sensing parameters within a reduced search space. The proposed protocol is developed and evaluated in a challenging context of single-shot readout of an NV-center electron spin under a constrained total sensing time budget; and yet it achieves significant improvements in both accuracy and resource efficiency for wide-range D.C. magnetic field estimation compared to the state of the art.
Abstract:Retrieval-Augmented Generation (RAG) improves Large Language Model (LLM) performance on knowledge-intensive tasks but depends heavily on initial search query quality. Current methods, often using Reinforcement Learning (RL), typically focus on query formulation or reasoning over results, without explicitly encouraging persistence after a failed search. We introduce ReZero (Retry-Zero), a novel RL framework that directly rewards the act of retrying a search query following an initial unsuccessful attempt. This incentivizes the LLM to explore alternative queries rather than prematurely halting. ReZero demonstrates significant improvement, achieving 46.88% accuracy compared to a 25% baseline. By rewarding persistence, ReZero enhances LLM robustness in complex information-seeking scenarios where initial queries may prove insufficient.
Abstract:In this paper, an ontology-based approach is used to organize the knowledge base of legal documents in road traffic law. This knowledge model is built by the improvement of ontology Rela-model. In addition, several searching problems on traffic law are proposed and solved based on the legal knowledge base. The intelligent search system on Vietnam road traffic law is constructed by applying the method. The searching system can help users to find concepts and definitions in road traffic law. Moreover, it can also determine penalties and fines for violations in the traffic. The experiment results show that the system is efficient for users' typical searching and is emerging for usage in the real-world.