Abstract:Structured prompting with XML tags has emerged as an effective way to steer large language models (LLMs) toward parseable, schema-adherent outputs in real-world systems. We develop a logic-first treatment of XML prompting that unifies (i) grammar-constrained decoding, (ii) fixed-point semantics over lattices of hierarchical prompts, and (iii) convergent human-AI interaction loops. We formalize a complete lattice of XML trees under a refinement order and prove that monotone prompt-to-prompt operators admit least fixed points (Knaster-Tarski) that characterize steady-state protocols; under a task-aware contraction metric on trees, we further prove Banach-style convergence of iterative guidance. We instantiate these results with context-free grammars (CFGs) for XML schemas and show how constrained decoding guarantees well-formedness while preserving task performance. A set of multi-layer human-AI interaction recipes demonstrates practical deployment patterns, including multi-pass "plan $\to$ verify $\to$ revise" routines and agentic tool use. We provide mathematically complete proofs and tie our framework to recent advances in grammar-aligned decoding, chain-of-verification, and programmatic prompting.
Abstract:Transformer-based language models excel in NLP tasks, but fine-grained control remains challenging. This paper explores methods for manipulating transformer models through principled interventions at three levels: prompts, activations, and weights. We formalize controllable text generation as an optimization problem addressable via prompt engineering, parameter-efficient fine-tuning, model editing, and reinforcement learning. We introduce a unified framework encompassing prompt-level steering, activation interventions, and weight-space edits. We analyze robustness and safety implications, including adversarial attacks and alignment mitigations. Theoretically, we show minimal weight updates can achieve targeted behavior changes with limited side-effects. Empirically, we demonstrate >90% success in sentiment control and factual edits while preserving base performance, though generalization-specificity trade-offs exist. We discuss ethical dual-use risks and the need for rigorous evaluation. This work lays groundwork for designing controllable and robust language models.