



Abstract:Child-centered long-form recordings are essential for studying early language development, but existing speech models trained on clean adult data perform poorly due to acoustic and linguistic differences. We introduce BabyHuBERT, the first self-supervised speech representation model trained on 13,000 hours of multilingual child-centered long-form recordings spanning over 40 languages. We evaluate BabyHuBERT on speaker segmentation, identifying when target children speak versus female adults, male adults, or other children -- a fundamental preprocessing step for analyzing naturalistic language experiences. BabyHuBERT achieves F1-scores from 52.1% to 74.4% across six diverse datasets, consistently outperforming W2V2-LL4300 (trained on English long-forms) and standard HuBERT (trained on clean adult speech). Notable improvements include 13.2 absolute F1 points over HuBERT on Vanuatu and 15.9 points on Solomon Islands corpora, demonstrating effectiveness on underrepresented languages. By sharing code and models, BabyHuBERT serves as a foundation model for child speech research, enabling fine-tuning on diverse downstream tasks.
Abstract:In evolutionary policy search, neural networks are usually represented using a direct mapping: each gene encodes one network weight. Indirect encoding methods, where each gene can encode for multiple weights, shorten the genome to reduce the dimensions of the search space and better exploit permutations and symmetries. The Geometric Encoding for Neural network Evolution (GENE) introduced an indirect encoding where the weight of a connection is computed as the (pseudo-)distance between the two linked neurons, leading to a genome size growing linearly with the number of genes instead of quadratically in direct encoding. However GENE still relies on hand-crafted distance functions with no prior optimization. Here we show that better performing distance functions can be found for GENE using Cartesian Genetic Programming (CGP) in a meta-evolution approach, hence optimizing the encoding to create a search space that is easier to exploit. We show that GENE with a learned function can outperform both direct encoding and the hand-crafted distances, generalizing on unseen problems, and we study how the encoding impacts neural network properties.