Abstract:Climate hazards increasingly disrupt urban transportation and emergency-response operations by damaging housing stock, degrading infrastructure, and reducing network accessibility. This paper presents Skjold-DiT, a diffusion-transformer framework that integrates heterogeneous spatio-temporal urban data to forecast building-level climate-risk indicators while explicitly incorporating transportation-network structure and accessibility signals relevant to intelligent vehicles (e.g., emergency reachability and evacuation-route constraints). Concretely, Skjold-DiT enables hazard-conditioned routing constraints by producing calibrated, uncertainty-aware accessibility layers (reachability, travel-time inflation, and route redundancy) that can be consumed by intelligent-vehicle routing and emergency dispatch systems. Skjold-DiT combines: (1) Fjell-Prompt, a prompt-based conditioning interface designed to support cross-city transfer; (2) Norrland-Fusion, a cross-modal attention mechanism unifying hazard maps/imagery, building attributes, demographics, and transportation infrastructure into a shared latent representation; and (3) Valkyrie-Forecast, a counterfactual simulator for generating probabilistic risk trajectories under intervention prompts. We introduce the Baltic-Caspian Urban Resilience (BCUR) dataset with 847,392 building-level observations across six cities, including multi-hazard annotations (e.g., flood and heat indicators) and transportation accessibility features. Experiments evaluate prediction quality, cross-city generalization, calibration, and downstream transportation-relevant outcomes, including reachability and hazard-conditioned travel times under counterfactual interventions.
Abstract:Affordable housing shortages affect billions, while land scarcity and regulations make site selection slow. We present AURA (Autonomous Urban Resource Allocator), a hierarchical multi-agent reinforcement learning system for real-time affordable housing site selection under hard regulatory constraints (QCT, DDA, LIHTC). We model the task as a constrained multi-objective Markov decision process optimizing accessibility, environmental impact, construction cost, and social equity while enforcing feasibility. AURA uses a regulatory-aware state encoding 127 federal and local constraints, Pareto-constrained policy gradients with feasibility guarantees, and reward decomposition separating immediate costs from long-term social outcomes. On datasets from 8 U.S. metros (47,392 candidate parcels), AURA attains 94.3% regulatory compliance and improves Pareto hypervolume by 37.2% over strong baselines. In a New York City 2026 case study, it reduces selection time from 18 months to 72 hours and identifies 23% more viable sites; chosen sites have 31% better transit access and 19% lower environmental impact than expert picks.
Abstract:Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
Abstract:Time series forecasting is a fundamental problem with applications in climate, energy, healthcare, and finance. Many existing approaches require domain-specific feature engineering and substantial labeled data for each task. We introduce PatchFormer, a patch-based time series foundation model that uses hierarchical masked reconstruction for self-supervised pretraining and lightweight adapters for efficient transfer. PatchFormer segments time series into patches and learns multiscale temporal representations with learnable aggregation across temporal scales. Pretraining uses masked patch reconstruction with dynamic masking and objectives that encourage both local accuracy and global consistency, followed by cross-domain knowledge distillation. Experiments on 24 benchmark datasets spanning weather, energy, traffic, finance, and healthcare demonstrate state-of-the-art zero-shot multi-horizon forecasting, reducing mean squared error by 27.3 percent relative to strong baselines while requiring 94 percent less task-specific training data. The model exhibits near log-linear scaling with more pretraining data up to 100 billion points and processes length-512 sequences 3.8x faster than full-sequence transformers.
Abstract:We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.
Abstract:We introduce Strategic Doctrine Language Models (sdLM), a learning-system framework for multi-document strategic reasoning with doctrinal consistency constraints and calibrated uncertainty. The approach combines multi-document attention, temporal encoding, and a doctrine-consistency layer to improve long-horizon forecasting and plan plausibility while reducing severe doctrinal violations. We evaluate sdLM using (i) expert-panel scoring of strategic scenarios (N=47), (ii) doctrine consistency on 336 doctrine publications (12,847 statements), and (iii) geopolitical forecasting on 127 historical counterfactuals (1945-2020) across 12-60 month horizons. Across these benchmarks, sdLM achieves higher strategic quality and better calibration than strong general-purpose LLM baselines, and remains competitive with human experts on long-horizon judgments. We further report ablations, scaling trends, and deployment-oriented performance/latency characteristics to clarify which components drive improvements and how they translate to operational settings.