Abstract:Affordable housing shortages affect billions, while land scarcity and regulations make site selection slow. We present AURA (Autonomous Urban Resource Allocator), a hierarchical multi-agent reinforcement learning system for real-time affordable housing site selection under hard regulatory constraints (QCT, DDA, LIHTC). We model the task as a constrained multi-objective Markov decision process optimizing accessibility, environmental impact, construction cost, and social equity while enforcing feasibility. AURA uses a regulatory-aware state encoding 127 federal and local constraints, Pareto-constrained policy gradients with feasibility guarantees, and reward decomposition separating immediate costs from long-term social outcomes. On datasets from 8 U.S. metros (47,392 candidate parcels), AURA attains 94.3% regulatory compliance and improves Pareto hypervolume by 37.2% over strong baselines. In a New York City 2026 case study, it reduces selection time from 18 months to 72 hours and identifies 23% more viable sites; chosen sites have 31% better transit access and 19% lower environmental impact than expert picks.
Abstract:Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
Abstract:We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.