Abstract:Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
Abstract:The Bahnar people, an ethnic minority in Vietnam with a rich ancestral heritage, possess a language of immense cultural and historical significance. The government places a strong emphasis on preserving and promoting the Bahnaric language by making it accessible online and encouraging communication across generations. Recent advancements in artificial intelligence, such as Neural Machine Translation (NMT), have brought about a transformation in translation by improving accuracy and fluency. This, in turn, contributes to the revival of the language through educational efforts, communication, and documentation. Specifically, NMT is pivotal in enhancing accessibility for Bahnaric speakers, making information and content more readily available. Nevertheless, the translation of Vietnamese into Bahnaric faces practical challenges due to resource constraints, especially given the limited resources available for the Bahnaric language. To address this, we employ state-of-the-art techniques in NMT along with two augmentation strategies for domain-specific Vietnamese-Bahnaric translation task. Importantly, both approaches are flexible and can be used with various neural machine translation models. Additionally, they do not require complex data preprocessing steps, the training of additional systems, or the acquisition of extra data beyond the existing training parallel corpora.