Abstract:Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
Abstract:Parameter tuning in real-world experiments is constrained by the limited evaluation budget available on hardware. The path-following controller studied in this paper reflects a typical situation in nonlinear geometric controller, where multiple gains influence the dynamics through coupled nonlinear terms. Such interdependence makes manual tuning inefficient and unlikely to yield satisfactory performance within a practical number of trials. To address this challenge, we propose a Bayesian optimization (BO) framework that treats the closed-loop system as a black box and selects controller gains using a Gaussian-process surrogate. BO offers model-free exploration, quantified uncertainty, and data-efficient search, making it well suited for tuning tasks where each evaluation is costly. The framework is implemented on Honda's AI-Formula three-wheeled robot and assessed through repeated full-lap experiments on a fixed test track. The results show that BO improves controller performance within 32 trials, including 15 warm-start initial evaluations, indicating that it can efficiently locate high-performing regions of the parameter space under real-world conditions. These findings demonstrate that BO provides a practical, reliable, and data-efficient tuning approach for nonlinear path-following controllers on real robotic platforms.