Abstract:We present Qiskit Machine Learning (ML), a high-level Python library that combines elements of quantum computing with traditional machine learning. The API abstracts Qiskit's primitives to facilitate interactions with classical simulators and quantum hardware. Qiskit ML started as a proof-of-concept code in 2019 and has since been developed to be a modular, intuitive tool for non-specialist users while allowing extensibility and fine-tuning controls for quantum computational scientists and developers. The library is available as a public, open-source tool and is distributed under the Apache version 2.0 license.
Abstract:Recent years have seen deep neural networks (DNNs) becoming wider and deeper to achieve better performance in many applications of AI. Such DNNs however require huge amounts of memory to store weights and intermediate results (e.g., activations, feature maps, etc.) in propagation. This requirement makes it difficult to run the DNNs on devices with limited, hard-to-extend memory, degrades the running time performance, and restricts the design of network models. We address this challenge by developing a novel profile-guided memory optimization to efficiently and quickly allocate memory blocks during the propagation in DNNs. The optimization utilizes a simple and fast heuristic algorithm based on the two-dimensional rectangle packing problem. Experimenting with well-known neural network models, we confirm that our method not only reduces the memory consumption by up to $49.5\%$ but also accelerates training and inference by up to a factor of four thanks to the rapidity of the memory allocation and the ability to use larger mini-batch sizes.