Abstract:Transformer models have demonstrated exceptional performance and have become indispensable in computer vision (CV) and natural language processing (NLP) tasks. However, recent studies reveal that transformers are susceptible to backdoor attacks. Prior backdoor attack methods typically rely on retraining with clean data or altering the model architecture, both of which can be resource-intensive and intrusive. In this paper, we propose Head-wise Pruning and Malicious Injection (HPMI), a novel retraining-free backdoor attack on transformers that does not alter the model's architecture. Our approach requires only a small subset of the original data and basic knowledge of the model architecture, eliminating the need for retraining the target transformer. Technically, HPMI works by pruning the least important head and injecting a pre-trained malicious head to establish the backdoor. We provide a rigorous theoretical justification demonstrating that the implanted backdoor resists detection and removal by state-of-the-art defense techniques, under reasonable assumptions. Experimental evaluations across multiple datasets further validate the effectiveness of HPMI, showing that it 1) incurs negligible clean accuracy loss, 2) achieves at least 99.55% attack success rate, and 3) bypasses four advanced defense mechanisms. Additionally, relative to state-of-the-art retraining-dependent attacks, HPMI achieves greater concealment and robustness against diverse defense strategies, while maintaining minimal impact on clean accuracy.
Abstract:The adaptation of large language models (LLMs) to time series forecasting poses unique challenges, as time series data is continuous in nature, while LLMs operate on discrete tokens. Despite the success of LLMs in natural language processing (NLP) and other structured domains, aligning time series data with language-based representations while maintaining both predictive accuracy and interpretability remains a significant hurdle. Existing methods have attempted to reprogram time series data into text-based forms, but these often fall short in delivering meaningful, interpretable results. In this paper, we propose a multi-level text alignment framework for time series forecasting using LLMs that not only improves prediction accuracy but also enhances the interpretability of time series representations. Our method decomposes time series into trend, seasonal, and residual components, which are then reprogrammed into component-specific text representations. We introduce a multi-level alignment mechanism, where component-specific embeddings are aligned with pre-trained word tokens, enabling more interpretable forecasts. Experiments on multiple datasets demonstrate that our method outperforms state-of-the-art models in accuracy while providing good interpretability.