Abstract:Grasping under limited sensing remains a fundamental challenge for real-world robotic manipulation, as vision and high-resolution tactile sensors often introduce cost, fragility, and integration complexity. This work demonstrates that reliable multifingered grasping can be achieved under extremely minimal sensing by relying solely on uniaxial fingertip force feedback and joint proprioception, without vision or multi-axis/tactile sensing. To enable such blind grasping, we employ an efficient teacher-student training pipeline in which a reinforcement-learned teacher exploits privileged simulation-only observations to generate demonstrations for distilling a transformer-based student policy operating under partial observation. The student policy is trained to act using only sensing modalities available at real-world deployment. We validate the proposed approach on real hardware across 18 objects, including both in-distribution and out-of-distribution cases, achieving a 98.3~$\%$ overall grasp success rate. These results demonstrate strong robustness and generalization beyond the simulation training distribution, while significantly reducing sensing requirements for real-world grasping systems.
Abstract:We study online optimization methods for zero-sum games, a fundamental problem in adversarial learning in machine learning, economics, and many other domains. Traditional methods approximate Nash equilibria (NE) using either regret-based methods (time-average convergence) or contraction-map-based methods (last-iterate convergence). We propose a new method based on Hamiltonian dynamics in physics and prove that it can characterize the set of NE in a finite (linear) number of iterations of alternating gradient descent in the unbounded setting, modulo degeneracy, a first in online optimization. Unlike standard methods for computing NE, our proposed approach can be parallelized and works with arbitrary learning rates, both firsts in algorithmic game theory. Experimentally, we support our results by showing our approach drastically outperforms standard methods.