Abstract:Persuasion is an important and yet complex aspect of human intelligence. When undertaken through dialogue, the deployment of good arguments, and therefore counterarguments, clearly has a significant effect on the ability to be successful in persuasion. Two key dimensions for determining whether an argument is good in a particular dialogue are the degree to which the intended audience believes the argument and counterarguments, and the impact that the argument has on the concerns of the intended audience. In this paper, we present a framework for modelling persuadees in terms of their beliefs and concerns, and for harnessing these models in optimizing the choice of move in persuasion dialogues. Our approach is based on the Monte Carlo Tree Search which allows optimization in real-time. We provide empirical results of a study with human participants showing that our automated persuasion system based on this technology is superior to a baseline system that does not take the beliefs and concerns into account in its strategy.
Abstract:Probabilistic epistemic argumentation allows for reasoning about argumentation problems in a way that is well founded by probability theory. Epistemic states are represented by probability functions over possible worlds and can be adjusted to new beliefs using update operators. While the use of probability functions puts this approach on a solid foundational basis, it also causes computational challenges as the amount of data to process depends exponentially on the number of arguments. This leads to bottlenecks in applications such as modelling opponent's beliefs for persuasion dialogues. We show how update operators over probability functions can be related to update operators over much more compact representations that allow polynomial-time updates. We discuss the cognitive and probabilistic-logical plausibility of this approach and demonstrate its applicability in computational persuasion.
Abstract:The aim of behaviour change is to help people to change aspects of their behaviour for the better (e.g., to decrease calorie intake, to drink in moderation, to take more exercise, to complete a course of antibiotics once started, etc.). In current persuasion technology for behaviour change, the emphasis is on helping people to explore their issues (e.g., through questionnaires or game playing) or to remember to follow a behaviour change plan (e.g., diaries and email reminders). However, recent developments in computational persuasion are leading to an argument-centric approach to persuasion that can potentially be harnessed in behaviour change applications. In this paper, we review developments in computational persuasion, and then focus on domain modelling as a key component. We present a multi-dimensional approach to domain modelling. At the core of this proposal is an ontology which provides a representation of key factors, in particular kinds of belief, which we have identified in the behaviour change literature as being important in diverse behaviour change initiatives. Our proposal for domain modelling is intended to facilitate the acquisition and representation of the arguments that can be used in persuasion dialogues, together with meta-level information about them which can be used by the persuader to make strategic choices of argument to present.
Abstract:This paper introduces epistemic graphs as a generalization of the epistemic approach to probabilistic argumentation. In these graphs, an argument can be believed or disbelieved up to a given degree, thus providing a more fine--grained alternative to the standard Dung's approaches when it comes to determining the status of a given argument. Furthermore, the flexibility of the epistemic approach allows us to both model the rationale behind the existing semantics as well as completely deviate from them when required. Epistemic graphs can model both attack and support as well as relations that are neither support nor attack. The way other arguments influence a given argument is expressed by the epistemic constraints that can restrict the belief we have in an argument with a varying degree of specificity. The fact that we can specify the rules under which arguments should be evaluated and we can include constraints between unrelated arguments permits the framework to be more context--sensitive. It also allows for better modelling of imperfect agents, which can be important in multi--agent applications.
Abstract:In dialogical argumentation it is often assumed that the involved parties always correctly identify the intended statements posited by each other, realize all of the associated relations, conform to the three acceptability states (accepted, rejected, undecided), adjust their views when new and correct information comes in, and that a framework handling only attack relations is sufficient to represent their opinions. Although it is natural to make these assumptions as a starting point for further research, removing them or even acknowledging that such removal should happen is more challenging for some of these concepts than for others. Probabilistic argumentation is one of the approaches that can be harnessed for more accurate user modelling. The epistemic approach allows us to represent how much a given argument is believed by a given person, offering us the possibility to express more than just three agreement states. It is equipped with a wide range of postulates, including those that do not make any restrictions concerning how initial arguments should be viewed, thus potentially being more adequate for handling beliefs of the people that have not fully disclosed their opinions in comparison to Dung's semantics. The constellation approach can be used to represent the views of different people concerning the structure of the framework we are dealing with, including cases in which not all relations are acknowledged or when they are seen differently than intended. Finally, bipolar argumentation frameworks can be used to express both positive and negative relations between arguments. In this paper we describe the results of an experiment in which participants judged dialogues in terms of agreement and structure. We compare our findings with the aforementioned assumptions as well as with the constellation and epistemic approaches to probabilistic argumentation and bipolar argumentation.
Abstract:Among the most general structures extending the framework by Dung are the abstract dialectical frameworks (ADFs). They come equipped with various types of semantics, with the most prominent - the labeling-based one - analyzed in the context of computational complexity, signatures, instantiations and software support. This makes the abstract dialectical frameworks valuable tools for argumentation. However, there are fewer results available concerning the relation between the ADFs and other argumentation frameworks. In this paper we would like to address this issue by introducing a number of translations from various formalisms into ADFs. The results of our study show the similarities and differences between them, thus promoting the use and understanding of ADFs. Moreover, our analysis also proves their capability to model many of the existing frameworks, including those that go beyond the attack relation. Finally, translations allow other structures to benefit from the research on ADFs in general and from the existing software in particular.
Abstract:One of the most prominent tools for abstract argumentation is the Dung's framework, AF for short. It is accompanied by a variety of semantics including grounded, complete, preferred and stable. Although powerful, AFs have their shortcomings, which led to development of numerous enrichments. Among the most general ones are the abstract dialectical frameworks, also known as the ADFs. They make use of the so-called acceptance conditions to represent arbitrary relations. This level of abstraction brings not only new challenges, but also requires addressing existing problems in the field. One of the most controversial issues, recognized not only in argumentation, concerns the support cycles. In this paper we introduce a new method to ensure acyclicity of the chosen arguments and present a family of extension-based semantics built on it. We also continue our research on the semantics that permit cycles and fill in the gaps from the previous works. Moreover, we provide ADF versions of the properties known from the Dung setting. Finally, we also introduce a classification of the developed sub-semantics and relate them to the existing labeling-based approaches.