Abstract:In this paper, we compare the performances of traditional machine learning models using feature engineering and word vectors and the state-of-the-art language model BERT using word embeddings on three datasets. We also consider the time and cost efficiency of feature engineering compared to BERT. From our results we conclude that the use of the BERT model was only worth the time and cost trade-off for one of the three datasets we used for comparison, where the BERT model significantly outperformed any kind of traditional classifier that uses feature vectors, instead of embeddings. Using the BERT model for the other datasets only achieved an increase of 0.03 and 0.05 of accuracy and F1 score respectively, which could be argued makes its use not worth the time and cost of GPU.
Abstract:The aim of behaviour change is to help people to change aspects of their behaviour for the better (e.g., to decrease calorie intake, to drink in moderation, to take more exercise, to complete a course of antibiotics once started, etc.). In current persuasion technology for behaviour change, the emphasis is on helping people to explore their issues (e.g., through questionnaires or game playing) or to remember to follow a behaviour change plan (e.g., diaries and email reminders). However, recent developments in computational persuasion are leading to an argument-centric approach to persuasion that can potentially be harnessed in behaviour change applications. In this paper, we review developments in computational persuasion, and then focus on domain modelling as a key component. We present a multi-dimensional approach to domain modelling. At the core of this proposal is an ontology which provides a representation of key factors, in particular kinds of belief, which we have identified in the behaviour change literature as being important in diverse behaviour change initiatives. Our proposal for domain modelling is intended to facilitate the acquisition and representation of the arguments that can be used in persuasion dialogues, together with meta-level information about them which can be used by the persuader to make strategic choices of argument to present.