Abstract:Open Radio Access Network (O-RAN) architecture provides an intrinsic capability to exploit key performance monitoring (KPM) within Radio Intelligence Controller (RIC) to derive network optimisation through xApps. These xApps can leverage KPM knowledge to dynamically switch on/off the associated RUs where such a function is supported over the E2 interface. Several existing studies employ artificial intelligence (AI)/Machine Learning (ML) based approaches to realise such dynamic sleeping for increased energy efficiency (EE). Nevertheless, most of these approaches rely upon offloading user equipment (UE) to carve out a sleeping opportunity. Such an approach inherently creates load imbalance across the network. Such load imbalance may impact the throughput performance of offloaded UEs as they might be allocated a lower number of physical resource blocks (PRBs). Maintaining the same PRB allocation while addressing the EE at the network level is a challenging task. To that end, in this article, we present a comprehensive ML-based framework for joint optimisation of load balancing and EE for ORAN deployments. We formulate the problem as a multi-class classification system that predictively evaluates potential RU configurations before optimising the EE, mapping network conditions to three load balance categories (Well Balanced, Moderately Balanced, Imbalanced). Our multi-threshold approach (Conservative, Moderate, Aggressive) accommodates different operational priorities between energy savings and performance assurance. Experimental evaluation using 4.26 million real network measurements from simulations demonstrates that our Random Forest model achieves 98.3% F1-macro performance, representing 195% improvement over traditional baseline strategies.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Using Unmanned Aerial Vehicles (UAVs) in Search and rescue operations (SAR) to navigate challenging terrain while maintaining reliable communication with the cellular network is a promising approach. This paper suggests a novel technique employing a reinforcement learning multi Q-learning algorithm to optimize UAV connectivity in such scenarios. We introduce a Strategic Planning Agent for efficient path planning and collision awareness and a Real-time Adaptive Agent to maintain optimal connection with the cellular base station. The agents trained in a simulated environment using multi Q-learning, encouraging them to learn from experience and adjust their decision-making to diverse terrain complexities and communication scenarios. Evaluation results reveal the significance of the approach, highlighting successful navigation in environments with varying obstacle densities and the ability to perform optimal connectivity using different frequency bands. This work paves the way for enhanced UAV autonomy and enhanced communication reliability in search and rescue operations.