Abstract:In this paper, we make a case for a proxy for large language models which has explicit support for cost-saving optimizations. We design LLMProxy, which supports three key optimizations: model selection, context management, and caching. These optimizations present tradeoffs in terms of cost, inference time, and response quality, which applications can navigate through our high level, bidirectional interface. As a case study, we implement a WhatsApp-based Q&A service that uses LLMProxy to provide a rich set of features to the users. This service is deployed on a small scale (100+ users) leveraging the cloud; it has been operational for 15+ weeks and users have asked 1400+ questions so far. We report on the experiences of running this service as well as microbenchmark the specific benefits of the various cost-optimizations we present in this paper.
Abstract:In this paper we build a case for providing job completion time predictions to cloud users, similar to the delivery date of a package or arrival time of a booked ride. Our analysis reveals that providing predictability can come at the expense of performance and fairness. Existing cloud scheduling systems optimize for extreme points in the trade-off space, making them either extremely unpredictable or impractical. To address this challenge, we present PCS, a new scheduling framework that aims to provide predictability while balancing other traditional objectives. The key idea behind PCS is to use Weighted-Fair-Queueing (WFQ) and find a suitable configuration of different WFQ parameters (e.g., class weights) that meets specific goals for predictability. It uses a simulation-aided search strategy, to efficiently discover WFQ configurations that lie on the Pareto front of the trade-off space between these objectives. We implement and evaluate PCS in the context of DNN job scheduling on GPUs. Our evaluation, on a small scale GPU testbed and larger-scale simulations, shows that PCS can provide accurate completion time estimates while marginally compromising on performance and fairness.