Alert button
Picture for Svetlana Kiritchenko

Svetlana Kiritchenko

Alert button

Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers

Jul 04, 2023
Isar Nejadgholi, Svetlana Kiritchenko, Kathleen C. Fraser, Esma Balkır

Figure 1 for Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers
Figure 2 for Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers
Figure 3 for Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers
Figure 4 for Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers

Classifiers tend to learn a false causal relationship between an over-represented concept and a label, which can result in over-reliance on the concept and compromised classification accuracy. It is imperative to have methods in place that can compare different models and identify over-reliances on specific concepts. We consider three well-known abusive language classifiers trained on large English datasets and focus on the concept of negative emotions, which is an important signal but should not be learned as a sufficient feature for the label of abuse. Motivated by the definition of global sufficiency, we first examine the unwanted dependencies learned by the classifiers by assessing their accuracy on a challenge set across all decision thresholds. Further, recognizing that a challenge set might not always be available, we introduce concept-based explanation metrics to assess the influence of the concept on the labels. These explanations allow us to compare classifiers regarding the degree of false global sufficiency they have learned between a concept and a label.

* Published at WOAH2023 co-located with ACL2023 
Viaarxiv icon

The crime of being poor

Mar 24, 2023
Georgina Curto, Svetlana Kiritchenko, Isar Nejadgholi, Kathleen C. Fraser

Figure 1 for The crime of being poor
Figure 2 for The crime of being poor
Figure 3 for The crime of being poor

The criminalization of poverty has been widely denounced as a collective bias against the most vulnerable. NGOs and international organizations claim that the poor are blamed for their situation, are more often associated with criminal offenses than the wealthy strata of society and even incur criminal offenses simply as a result of being poor. While no evidence has been found in the literature that correlates poverty and overall criminality rates, this paper offers evidence of a collective belief that associates both concepts. This brief report measures the societal bias that correlates criminality with the poor, as compared to the rich, by using Natural Language Processing (NLP) techniques in Twitter. The paper quantifies the level of crime-poverty bias in a panel of eight different English-speaking countries. The regional differences in the association between crime and poverty cannot be justified based on different levels of inequality or unemployment, which the literature correlates to property crimes. The variation in the observed rates of crime-poverty bias for different geographic locations could be influenced by cultural factors and the tendency to overestimate the equality of opportunities and social mobility in specific countries. These results have consequences for policy-making and open a new path of research for poverty mitigation with the focus not only on the poor but on society as a whole. Acting on the collective bias against the poor would facilitate the approval of poverty reduction policies, as well as the restoration of the dignity of the persons affected.

Viaarxiv icon

A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?

Feb 14, 2023
Kathleen C. Fraser, Svetlana Kiritchenko, Isar Nejadgholi

Figure 1 for A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?
Figure 2 for A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?
Figure 3 for A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?
Figure 4 for A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?

As text-to-image systems continue to grow in popularity with the general public, questions have arisen about bias and diversity in the generated images. Here, we investigate properties of images generated in response to prompts which are visually under-specified, but contain salient social attributes (e.g., 'a portrait of a threatening person' versus 'a portrait of a friendly person'). Grounding our work in social cognition theory, we find that in many cases, images contain similar demographic biases to those reported in the stereotype literature. However, trends are inconsistent across different models and further investigation is warranted.

* Appearing in the AAAI 2023 Workshop on Creative AI Across Modalities 
Viaarxiv icon

Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information

Oct 19, 2022
Isar Nejadgholi, Esma Balkır, Kathleen C. Fraser, Svetlana Kiritchenko

Figure 1 for Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
Figure 2 for Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
Figure 3 for Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
Figure 4 for Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information

Previous works on the fairness of toxic language classifiers compare the output of models with different identity terms as input features but do not consider the impact of other important concepts present in the context. Here, besides identity terms, we take into account high-level latent features learned by the classifier and investigate the interaction between these features and identity terms. For a multi-class toxic language classifier, we leverage a concept-based explanation framework to calculate the sensitivity of the model to the concept of sentiment, which has been used before as a salient feature for toxic language detection. Our results show that although for some classes, the classifier has learned the sentiment information as expected, this information is outweighed by the influence of identity terms as input features. This work is a step towards evaluating procedural fairness, where unfair processes lead to unfair outcomes. The produced knowledge can guide debiasing techniques to ensure that important concepts besides identity terms are well-represented in training datasets.

* 13 pages, 2 figures, accepted at the fifth edition of BlackBoxNLP collocated with EMNLP2022 
Viaarxiv icon

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

Jun 10, 2022
Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.

* 27 pages, 17 figures + references and appendices, repo: https://github.com/google/BIG-bench 
Viaarxiv icon

Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models

Jun 08, 2022
Esma Balkir, Svetlana Kiritchenko, Isar Nejadgholi, Kathleen C. Fraser

Figure 1 for Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Figure 2 for Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models

Motivations for methods in explainable artificial intelligence (XAI) often include detecting, quantifying and mitigating bias, and contributing to making machine learning models fairer. However, exactly how an XAI method can help in combating biases is often left unspecified. In this paper, we briefly review trends in explainability and fairness in NLP research, identify the current practices in which explainability methods are applied to detect and mitigate bias, and investigate the barriers preventing XAI methods from being used more widely in tackling fairness issues.

* TrustNLP Workshop at NAACL 2022 
Viaarxiv icon

Does Moral Code Have a Moral Code? Probing Delphi's Moral Philosophy

May 25, 2022
Kathleen C. Fraser, Svetlana Kiritchenko, Esma Balkir

Figure 1 for Does Moral Code Have a Moral Code? Probing Delphi's Moral Philosophy
Figure 2 for Does Moral Code Have a Moral Code? Probing Delphi's Moral Philosophy
Figure 3 for Does Moral Code Have a Moral Code? Probing Delphi's Moral Philosophy
Figure 4 for Does Moral Code Have a Moral Code? Probing Delphi's Moral Philosophy

In an effort to guarantee that machine learning model outputs conform with human moral values, recent work has begun exploring the possibility of explicitly training models to learn the difference between right and wrong. This is typically done in a bottom-up fashion, by exposing the model to different scenarios, annotated with human moral judgements. One question, however, is whether the trained models actually learn any consistent, higher-level ethical principles from these datasets -- and if so, what? Here, we probe the Allen AI Delphi model with a set of standardized morality questionnaires, and find that, despite some inconsistencies, Delphi tends to mirror the moral principles associated with the demographic groups involved in the annotation process. We question whether this is desirable and discuss how we might move forward with this knowledge.

* To appear at TrustNLP Workshop @ NAACL 2022 
Viaarxiv icon

Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection

May 06, 2022
Esma Balkir, Isar Nejadgholi, Kathleen C. Fraser, Svetlana Kiritchenko

Figure 1 for Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Figure 2 for Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Figure 3 for Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Figure 4 for Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection

We present a novel feature attribution method for explaining text classifiers, and analyze it in the context of hate speech detection. Although feature attribution models usually provide a single importance score for each token, we instead provide two complementary and theoretically-grounded scores -- necessity and sufficiency -- resulting in more informative explanations. We propose a transparent method that calculates these values by generating explicit perturbations of the input text, allowing the importance scores themselves to be explainable. We employ our method to explain the predictions of different hate speech detection models on the same set of curated examples from a test suite, and show that different values of necessity and sufficiency for identity terms correspond to different kinds of false positive errors, exposing sources of classifier bias against marginalized groups.

* NAACL 2022 
Viaarxiv icon

Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors

Apr 05, 2022
Isar Nejadgholi, Kathleen C. Fraser, Svetlana Kiritchenko

Figure 1 for Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors
Figure 2 for Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors
Figure 3 for Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors
Figure 4 for Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors

Robustness of machine learning models on ever-changing real-world data is critical, especially for applications affecting human well-being such as content moderation. New kinds of abusive language continually emerge in online discussions in response to current events (e.g., COVID-19), and the deployed abuse detection systems should be updated regularly to remain accurate. In this paper, we show that general abusive language classifiers tend to be fairly reliable in detecting out-of-domain explicitly abusive utterances but fail to detect new types of more subtle, implicit abuse. Next, we propose an interpretability technique, based on the Testing Concept Activation Vector (TCAV) method from computer vision, to quantify the sensitivity of a trained model to the human-defined concepts of explicit and implicit abusive language, and use that to explain the generalizability of the model on new data, in this case, COVID-related anti-Asian hate speech. Extending this technique, we introduce a novel metric, Degree of Explicitness, for a single instance and show that the new metric is beneficial in suggesting out-of-domain unlabeled examples to effectively enrich the training data with informative, implicitly abusive texts.

* accepted to be published at ACL2022 
Viaarxiv icon