Abstract:We study the problem of estimating the average treatment effect (ATE) under sequentially adaptive treatment assignment mechanisms. In contrast to classical completely randomized designs, we consider a setting in which the probability of assigning treatment to each experimental unit may depend on prior assignments and observed outcomes. Within the potential outcomes framework, we propose and analyze two natural estimators for the ATE: the inverse propensity weighted (IPW) estimator and an augmented IPW (AIPW) estimator. The cornerstone of our analysis is the concept of design stability, which requires that as the number of units grows, either the assignment probabilities converge, or sample averages of the inverse propensity scores and of the inverse complement propensity scores converge in probability to fixed, non-random limits. Our main results establish central limit theorems for both the IPW and AIPW estimators under design stability and provide explicit expressions for their asymptotic variances. We further propose estimators for these variances, enabling the construction of asymptotically valid confidence intervals. Finally, we illustrate our theoretical results in the context of Wei's adaptive coin design and Efron's biased coin design, highlighting the applicability of the proposed methods to sequential experimentation with adaptive randomization.
Abstract:Estimation and inference in statistics pose significant challenges when data are collected adaptively. Even in linear models, the Ordinary Least Squares (OLS) estimator may fail to exhibit asymptotic normality for single coordinate estimation and have inflated error. This issue is highlighted by a recent minimax lower bound, which shows that the error of estimating a single coordinate can be enlarged by a multiple of $\sqrt{d}$ when data are allowed to be arbitrarily adaptive, compared with the case when they are i.i.d. Our work explores this striking difference in estimation performance between utilizing i.i.d. and adaptive data. We investigate how the degree of adaptivity in data collection impacts the performance of estimating a low-dimensional parameter component in high-dimensional linear models. We identify conditions on the data collection mechanism under which the estimation error for a low-dimensional parameter component matches its counterpart in the i.i.d. setting, up to a factor that depends on the degree of adaptivity. We show that OLS or OLS on centered data can achieve this matching error. In addition, we propose a novel estimator for single coordinate inference via solving a Two-stage Adaptive Linear Estimating equation (TALE). Under a weaker form of adaptivity in data collection, we establish an asymptotic normality property of the proposed estimator.