Abstract:The integrity and reliability of scientific literature is facing a serious threat by adversarial text generation techniques, specifically from the use of automated paraphrasing tools to mask plagiarism. These tools generate "tortured phrases", statistically improbable synonyms (e.g. "counterfeit consciousness" for "artificial intelligence"), that preserve the local grammar while obscuring the original source. Most existing detection methods depend heavily on static blocklists or general-domain language models, which suffer from high false-negative rates for novel obfuscations and cannot determine the source of the plagiarized content. In this paper, we propose Semantic Reconstruction of Adversarial Plagiarism (SRAP), a framework designed not only to detect these anomalies but to mathematically recover the original terminology. We use a two-stage architecture: (1) statistical anomaly detection with a domain-specific masked language model (SciBERT) using token-level pseudo-perplexity, and (2) source-based semantic reconstruction using dense vector retrieval (FAISS) and sentence-level alignment (SBERT). Experiments on a parallel corpus of adversarial scientific text show that while zero-shot baselines fail completely (0.00 percent restoration accuracy), our retrieval-augmented approach achieves 23.67 percent restoration accuracy, significantly outperforming baseline methods. We also show that static decision boundaries are necessary for robust detection in jargon-heavy scientific text, since dynamic thresholding fails under high variance. SRAP enables forensic analysis by linking obfuscated expressions back to their most probable source documents.


Abstract:Malaria is considered one of the deadliest diseases in today world which causes thousands of deaths per year. The parasites responsible for malaria are scientifically known as Plasmodium which infects the red blood cells in human beings. The parasites are transmitted by a female class of mosquitos known as Anopheles. The diagnosis of malaria requires identification and manual counting of parasitized cells by medical practitioners in microscopic blood smears. Due to the unavailability of resources, its diagnostic accuracy is largely affected by large scale screening. State of the art Computer-aided diagnostic techniques based on deep learning algorithms such as CNNs, with end to end feature extraction and classification, have widely contributed to various image recognition tasks. In this paper, we evaluate the performance of custom made convnet Mosquito-Net, to classify the infected and uninfected cells for malaria diagnosis which could be deployed on the edge and mobile devices owing to its fewer parameters and less computation power. Therefore, it can be wildly preferred for diagnosis in remote and countryside areas where there is a lack of medical facilities.



Abstract:In this paper we have investigated the performance of PSO Particle Swarm Optimization based clustering on few real world data sets and one artificial data set. The performances are measured by two metric namely quantization error and inter-cluster distance. The K means clustering algorithm is first implemented for all data sets, the results of which form the basis of comparison of PSO based approaches. We have explored different variants of PSO such as gbest, lbest ring, lbest vonneumann and Hybrid PSO for comparison purposes. The results reveal that PSO based clustering algorithms perform better compared to K means in all data sets.