Abstract:Recent claims suggest that large language models (LMs) underperform humans in comprehending minimally complex English statements (Dentella et al., 2024). Here, we revisit those findings and argue that human performance was overestimated, while LLM abilities were underestimated. Using the same stimuli, we report a preregistered study comparing human responses in two conditions: one allowed rereading (replicating the original study), and one that restricted rereading (a more naturalistic comprehension test). Human accuracy dropped significantly when rereading was restricted (73%), falling below that of Falcon-180B-Chat (76%) and GPT-4 (81%). The newer GPT-o1 model achieves perfect accuracy. Results further show that both humans and models are disproportionately challenged by queries involving potentially reciprocal actions (e.g., kissing), suggesting shared pragmatic sensitivities rather than model-specific deficits. Additional analyses using Llama-2-70B log probabilities, a recoding of open-ended model responses, and grammaticality ratings of other sentences reveal systematic underestimation of model performance. We find that GPT-4o can align with either naive or expert grammaticality judgments, depending on prompt framing. These findings underscore the need for more careful experimental design and coding practices in LLM evaluation, and they challenge the assumption that current models are inherently weaker than humans at language comprehension.
Abstract:It remains debated how well any LM understands natural language or generates reliable metalinguistic judgments. Moreover, relatively little work has demonstrated that LMs can represent and respect subtle relationships between form and function proposed by linguists. We here focus on a particular such relationship established in recent work: English speakers' judgments about the information structure of canonical sentences predicts independently collected acceptability ratings on corresponding 'long distance dependency' [LDD] constructions, across a wide array of base constructions and multiple types of LDDs. To determine whether any LM captures this relationship, we probe GPT-4 on the same tasks used with humans and new extensions.Results reveal reliable metalinguistic skill on the information structure and acceptability tasks, replicating a striking interaction between the two, despite the zero-shot, explicit nature of the tasks, and little to no chance of contamination [Studies 1a, 1b]. Study 2 manipulates the information structure of base sentences and confirms a causal relationship: increasing the prominence of a constituent in a context sentence increases the subsequent acceptability ratings on an LDD construction. The findings suggest a tight relationship between natural and GPT-4 generated English, and between information structure and syntax, which begs for further exploration.