Abstract:We investigate the relationship between representation geometry and neural network performance. Analyzing 52 pretrained ImageNet models across 13 architecture families, we show that effective dimension -- an unsupervised geometric metric -- strongly predicts accuracy. Output effective dimension achieves partial r=0.75 ($p < 10^(-10)$) after controlling for model capacity, while total compression achieves partial r=-0.72. These findings replicate across ImageNet and CIFAR-10, and generalize to NLP: effective dimension predicts performance for 8 encoder models on SST-2/MNLI and 15 decoder-only LLMs on AG News (r=0.69, p=0.004), while model size does not (r=0.07). We establish bidirectional causality: degrading geometry via noise causes accuracy loss (r=-0.94, $p < 10^(-9)$), while improving geometry via PCA maintains accuracy across architectures (-0.03pp at 95% variance). This relationship is noise-type agnostic -- Gaussian, Uniform, Dropout, and Salt-and-pepper noise all show $|r| > 0.90$. These results establish that effective dimension provides domain-agnostic predictive and causal information about neural network performance, computed entirely without labels.
Abstract:Natural Language Understanding (NLU) for low-resource languages remains a major challenge in NLP due to the scarcity of high-quality data and language-specific models. Maithili, despite being spoken by millions, lacks adequate computational resources, limiting its inclusion in digital and AI-driven applications. To address this gap, we introducemaiBERT, a BERT-based language model pre-trained specifically for Maithili using the Masked Language Modeling (MLM) technique. Our model is trained on a newly constructed Maithili corpus and evaluated through a news classification task. In our experiments, maiBERT achieved an accuracy of 87.02%, outperforming existing regional models like NepBERTa and HindiBERT, with a 0.13% overall accuracy gain and 5-7% improvement across various classes. We have open-sourced maiBERT on Hugging Face enabling further fine-tuning for downstream tasks such as sentiment analysis and Named Entity Recognition (NER).