Abstract:Approximate Nearest Neighbor (ANN) search and Approximate Kernel Density Estimation (A-KDE) are fundamental problems at the core of modern machine learning, with broad applications in data analysis, information systems, and large-scale decision making. In massive and dynamic data streams, a central challenge is to design compact sketches that preserve essential structural properties of the data while enabling efficient queries. In this work, we develop new sketching algorithms that achieve sublinear space and query time guarantees for both ANN and A-KDE for a dynamic stream of data. For ANN in the streaming model, under natural assumptions, we design a sublinear sketch that requires only $\mathcal{O}(n^{1+\rho-\eta})$ memory by storing only a sublinear ($n^{-\eta}$) fraction of the total inputs, where $\rho$ is a parameter of the LSH family, and $0<\eta<1$. Our method supports sublinear query time, batch queries, and extends to the more general Turnstile model. While earlier works have focused on Exact NN, this is the first result on ANN that achieves near-optimal trade-offs between memory size and approximation error. Next, for A-KDE in the Sliding-Window model, we propose a sketch of size $\mathcal{O}\left(RW \cdot \frac{1}{\sqrt{1+\epsilon} - 1} \log^2 N\right)$, where $R$ is the number of sketch rows, $W$ is the LSH range, $N$ is the window size, and $\epsilon$ is the approximation error. This, to the best of our knowledge, is the first theoretical sublinear sketch guarantee for A-KDE in the Sliding-Window model. We complement our theoretical results with experiments on various real-world datasets, which show that the proposed sketches are lightweight and achieve consistently low error in practice.
Abstract:VC-dimension and $\varepsilon$-nets are key concepts in Statistical Learning Theory. Intuitively, VC-dimension is a measure of the size of a class of sets. The famous $\varepsilon$-net theorem, a fundamental result in Discrete Geometry, asserts that if the VC-dimension of a set system is bounded, then a small sample exists that intersects all sufficiently large sets. In online learning scenarios where data arrives sequentially, the VC-dimension helps to bound the complexity of the set system, and $\varepsilon$-nets ensure the selection of a small representative set. This sampling framework is crucial in various domains, including spatial data analysis, motion planning in dynamic environments, optimization of sensor networks, and feature extraction in computer vision, among others. Motivated by these applications, we study the online $\varepsilon$-net problem for geometric concepts with bounded VC-dimension. While the offline version of this problem has been extensively studied, surprisingly, there are no known theoretical results for the online version to date. We present the first deterministic online algorithm with an optimal competitive ratio for intervals in $\mathbb{R}$. Next, we give a randomized online algorithm with a near-optimal competitive ratio for axis-aligned boxes in $\mathbb{R}^d$, for $d\le 3$. Furthermore, we introduce a novel technique to analyze similar-sized objects of constant description complexity in $\mathbb{R}^d$, which may be of independent interest. Next, we focus on the continuous version of this problem, where ranges of the set system are geometric concepts in $\mathbb{R}^d$ arriving in an online manner, but the universe is the entire space, and the objective is to choose a small sample that intersects all the ranges.