Abstract:Turbulence plays a crucial role in multiphysics applications, including aerodynamics, fusion, and combustion. Accurately capturing turbulence's multiscale characteristics is essential for reliable predictions of multiphysics interactions, but remains a grand challenge even for exascale supercomputers and advanced deep learning models. The extreme-resolution data required to represent turbulence, ranging from billions to trillions of grid points, pose prohibitive computational costs for models based on architectures like vision transformers. To address this challenge, we introduce a multiscale hierarchical Turbulence Transformer that reduces sequence length from billions to a few millions and a novel RingX sequence parallelism approach that enables scalable long-context learning. We perform scaling and science runs on the Frontier supercomputer. Our approach demonstrates excellent performance up to 1.1 EFLOPS on 32,768 AMD GPUs, with a scaling efficiency of 94%. To our knowledge, this is the first AI model for turbulence that can capture small-scale eddies down to the dissipative range.
Abstract:We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes (URANS) equations applied to stably stratified turbulence (SST). SST is strongly affected by fine balances between forces and becomes more anisotropic in time for decaying cases. Moreover, there is a limited understanding of the physical phenomena described by some of the terms in the URANS equations. Rather than attempting to model each term separately, it is attractive to explore the capability of machine learning to model groups of terms, i.e., to directly model the force balances. We consider decaying SST which are homogeneous and stably stratified by a uniform density gradient, enabling dimensionality reduction. We consider two time-series ML models: Long Short-Term Memory (LSTM) and Neural Ordinary Differential Equation (NODE). Both models perform accurately and are numerically stable in a posteriori tests. Furthermore, we explore the data requirements of the ML models by extracting physically relevant timescales of the complex system. We find that the ratio of the timescales of the minimum information required by the ML models to accurately capture the dynamics of the SST corresponds to the Reynolds number of the flow. The current framework provides the backbone to explore the capability of such models to capture the dynamics of higher-dimensional complex SST flows.