Abstract:Human planning is efficient -- it frugally deploys limited cognitive resources to accomplish difficult tasks -- and flexible -- adapting to novel problems and environments. Computational approaches suggest that people construct simplified mental representations of their environment, balancing the complexity of a task representation with its utility. These models imply a nested optimisation in which planning shapes perception, and perception shapes planning -- but the perceptual and attentional mechanisms governing how this interaction unfolds remain unknown. Here, we harness virtual maze navigation to characterise how spatial attention controls which aspects of a task representation enter subjective awareness and are available for planning. We find that spatial proximity governs which aspects of a maze are available for planning, and that when task-relevant information follows natural (lateralised) contours of attention, people can more easily construct simplified and useful maze representations. This influence of attention varies considerably across individuals, explaining differences in people's task representations and behaviour. Inspired by the 'spotlight of attention' analogy, we incorporate the effects of visuospatial attention into existing computational accounts of value-guided construal. Together, our work bridges computational perspectives on perception and decision-making to better understand how individuals represent their environments in aid of planning.
Abstract:Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.