Abstract:The security of modern vehicles has become increasingly important, with the controller area network (CAN) bus serving as a critical communication backbone for various Electronic Control Units (ECUs). The absence of robust security measures in CAN, coupled with the increasing connectivity of vehicles, makes them susceptible to cyberattacks. While intrusion detection systems (IDSs) have been developed to counter such threats, they are not foolproof. Adversarial attacks, particularly evasion attacks, can manipulate inputs to bypass detection by IDSs. This paper extends our previous work by investigating the feasibility and impact of gradient-based adversarial attacks performed with different degrees of knowledge against automotive IDSs. We consider three scenarios: white-box (attacker with full system knowledge), grey-box (partial system knowledge), and the more realistic black-box (no knowledge of the IDS' internal workings or data). We evaluate the effectiveness of the proposed attacks against state-of-the-art IDSs on two publicly available datasets. Additionally, we study effect of the adversarial perturbation on the attack impact and evaluate real-time feasibility by precomputing evasive payloads for timed injection based on bus traffic. Our results demonstrate that, besides attacks being challenging due to the automotive domain constraints, their effectiveness is strongly dependent on the dataset quality, the target IDS, and the attacker's degree of knowledge.
Abstract:Federated Learning has emerged as a privacy-oriented alternative to centralized Machine Learning, enabling collaborative model training without direct data sharing. While extensively studied for neural networks, the security and privacy implications of tree-based models remain underexplored. This work introduces TimberStrike, an optimization-based dataset reconstruction attack targeting horizontally federated tree-based models. Our attack, carried out by a single client, exploits the discrete nature of decision trees by using split values and decision paths to infer sensitive training data from other clients. We evaluate TimberStrike on State-of-the-Art federated gradient boosting implementations across multiple frameworks, including Flower, NVFlare, and FedTree, demonstrating their vulnerability to privacy breaches. On a publicly available stroke prediction dataset, TimberStrike consistently reconstructs between 73.05% and 95.63% of the target dataset across all implementations. We further analyze Differential Privacy, showing that while it partially mitigates the attack, it also significantly degrades model performance. Our findings highlight the need for privacy-preserving mechanisms specifically designed for tree-based Federated Learning systems, and we provide preliminary insights into their design.
Abstract:As electronic systems become increasingly complex and prevalent in modern vehicles, securing onboard networks is crucial, particularly as many of these systems are safety-critical. Researchers have demonstrated that modern vehicles are susceptible to various types of attacks, enabling attackers to gain control and compromise safety-critical electronic systems. Consequently, several Intrusion Detection Systems (IDSs) have been proposed in the literature to detect such cyber-attacks on vehicles. This paper introduces a novel generative classifier-based Intrusion Detection System (IDS) designed for anomaly detection in automotive networks, specifically focusing on the Controller Area Network (CAN). Leveraging variational Bayes, our proposed IDS utilizes a deep latent variable model to construct a causal graph for conditional probabilities. An auto-encoder architecture is utilized to build the classifier to estimate conditional probabilities, which contribute to the final prediction probabilities through Bayesian inference. Comparative evaluations against state-of-the-art IDSs on a public Car-hacking dataset highlight our proposed classifier's superior performance in improving detection accuracy and F1-score. The proposed IDS demonstrates its efficacy by outperforming existing models with limited training data, providing enhanced security assurance for automotive systems.