Abstract:Integrating deep learning applications into agricultural IoT systems faces a serious challenge of balancing the high accuracy of Vision Transformers (ViTs) with the efficiency demands of resource-constrained edge devices. Large transformer models like the Swin Transformers excel in plant disease classification by capturing global-local dependencies. However, their computational complexity (34.1 GFLOPs) limits applications and renders them impractical for real-time on-device inference. Lightweight models such as MobileNetV3 and TinyML would be suitable for on-device inference but lack the required spatial reasoning for fine-grained disease detection. To bridge this gap, we propose a hybrid knowledge distillation framework that synergistically transfers logit and attention knowledge from a Swin Transformer teacher to a MobileNetV3 student model. Our method includes the introduction of adaptive attention alignment to resolve cross-architecture mismatch (resolution, channels) and a dual-loss function optimizing both class probabilities and spatial focus. On the lantVillage-Tomato dataset (18,160 images), the distilled MobileNetV3 attains 92.4% accuracy relative to 95.9% for Swin-L but at an 95% reduction on PC and < 82% in inference latency on IoT devices. (23ms on PC CPU and 86ms/image on smartphone CPUs). Key innovations include IoT-centric validation metrics (13 MB memory, 0.22 GFLOPs) and dynamic resolution-matching attention maps. Comparative experiments show significant improvements over standalone CNNs and prior distillation methods, with a 3.5% accuracy gain over MobileNetV3 baselines. Significantly, this work advances real-time, energy-efficient crop monitoring in precision agriculture and demonstrates how we can attain ViT-level diagnostic precision on edge devices. Code and models will be made available for replication after acceptance.
Abstract:Humans use collaborative robots as tools for accomplishing various tasks. The interaction between humans and robots happens in tight shared workspaces. However, these machines must be safe to operate alongside humans to minimize the risk of accidental collisions. Ensuring safety imposes many constraints, such as reduced torque and velocity limits during operation, thus increasing the time to accomplish many tasks. However, for applications such as using collaborative robots as haptic interfaces with intermittent contacts for virtual reality applications, speed limitations result in poor user experiences. This research aims to improve the efficiency of a collaborative robot while improving the safety of the human user. We used Gaussian process models to predict human hand motion and developed strategies for human intention detection based on hand motion and gaze to improve the time for the robot and human security in a virtual environment. We then studied the effect of prediction. Results from comparisons show that the prediction models improved the robot time by 3\% and safety by 17\%. When used alongside gaze, prediction with Gaussian process models resulted in an improvement of the robot time by 2\% and the safety by 13\%.