Abstract:Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
Abstract:Motivation: In recent years, image-based biological assays have steadily become high-throughput, sparking a need for fast automated methods to extract biologically-meaningful information from hundreds of thousands of images. Taking inspiration from the success of ImageNet, we curate CytoImageNet, a large-scale dataset of openly-sourced and weakly-labeled microscopy images (890K images, 894 classes). Pretraining on CytoImageNet yields features that are competitive to ImageNet features on downstream microscopy classification tasks. We show evidence that CytoImageNet features capture information not available in ImageNet-trained features. The dataset is made available at https://www.kaggle.com/stanleyhua/cytoimagenet.