Picture for Stéphanie Allassonnière

Stéphanie Allassonnière

CRC

T-Rep: Representation Learning for Time Series using Time-Embeddings

Add code
Oct 06, 2023
Viaarxiv icon

Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis

Add code
May 19, 2023
Figure 1 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 2 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 3 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 4 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Viaarxiv icon

Variational Inference for Longitudinal Data Using Normalizing Flows

Add code
Mar 24, 2023
Figure 1 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 2 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 3 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 4 for Variational Inference for Longitudinal Data Using Normalizing Flows
Viaarxiv icon

A Geometric Perspective on Variational Autoencoders

Add code
Sep 15, 2022
Figure 1 for A Geometric Perspective on Variational Autoencoders
Figure 2 for A Geometric Perspective on Variational Autoencoders
Figure 3 for A Geometric Perspective on Variational Autoencoders
Figure 4 for A Geometric Perspective on Variational Autoencoders
Viaarxiv icon

Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case

Add code
Jun 16, 2022
Figure 1 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 2 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 3 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 4 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Viaarxiv icon

Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder

Add code
Apr 30, 2021
Figure 1 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 2 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 3 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 4 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Viaarxiv icon

Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE

Add code
Mar 25, 2021
Figure 1 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 2 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 3 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 4 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Viaarxiv icon

Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares

Add code
Oct 27, 2020
Figure 1 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Figure 2 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Viaarxiv icon

Geometry-Aware Hamiltonian Variational Auto-Encoder

Add code
Oct 22, 2020
Figure 1 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 2 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 3 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 4 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Viaarxiv icon

Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors

Add code
Jun 19, 2020
Figure 1 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 2 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 3 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 4 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Viaarxiv icon