Alert button
Picture for Stéphanie Allassonnière

Stéphanie Allassonnière

Alert button

CRC

T-Rep: Representation Learning for Time Series using Time-Embeddings

Oct 06, 2023
Archibald Fraikin, Adrien Bennetot, Stéphanie Allassonnière

Viaarxiv icon

Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis

May 19, 2023
Agathe Senellart, Clément Chadebec, Stéphanie Allassonnière

Figure 1 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 2 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 3 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Figure 4 for Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Viaarxiv icon

Variational Inference for Longitudinal Data Using Normalizing Flows

Mar 24, 2023
Clément Chadebec, Stéphanie Allassonnière

Figure 1 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 2 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 3 for Variational Inference for Longitudinal Data Using Normalizing Flows
Figure 4 for Variational Inference for Longitudinal Data Using Normalizing Flows
Viaarxiv icon

A Geometric Perspective on Variational Autoencoders

Sep 15, 2022
Clément Chadebec, Stéphanie Allassonnière

Figure 1 for A Geometric Perspective on Variational Autoencoders
Figure 2 for A Geometric Perspective on Variational Autoencoders
Figure 3 for A Geometric Perspective on Variational Autoencoders
Figure 4 for A Geometric Perspective on Variational Autoencoders
Viaarxiv icon

Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case

Jun 16, 2022
Clément Chadebec, Louis J. Vincent, Stéphanie Allassonnière

Figure 1 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 2 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 3 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 4 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Viaarxiv icon

Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder

Apr 30, 2021
Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, Stéphanie Allassonnière

Figure 1 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 2 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 3 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 4 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Viaarxiv icon

Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE

Mar 25, 2021
Clément Chadebec, Stéphanie Allassonnière

Figure 1 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 2 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 3 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 4 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Viaarxiv icon

Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares

Oct 27, 2020
Frédéric Logé, Rémi Besson, Stéphanie Allassonnière

Figure 1 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Figure 2 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Viaarxiv icon

Geometry-Aware Hamiltonian Variational Auto-Encoder

Oct 22, 2020
Clément Chadebec, Clément Mantoux, Stéphanie Allassonnière

Figure 1 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 2 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 3 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 4 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Viaarxiv icon

Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors

Jun 19, 2020
Thomas Lartigue, Stanley Durrleman, Stéphanie Allassonnière

Figure 1 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 2 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 3 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 4 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Viaarxiv icon