Abstract:Numerous self-supervised learning paradigms, such as contrastive learning and masked image modeling, learn powerful representations from unlabeled data but are typically pretrained in isolation, overlooking complementary insights and yielding large models that are impractical for resource-constrained deployment. To overcome these challenges, we introduce Consensus-oriented Masked Distillation (CoMAD), a lightweight, parameter-free framework that unifies knowledge from multiple current state-of-the-art self-supervised Vision Transformers into a compact student network. CoMAD distills from three pretrained ViT-Base teachers, MAE, MoCo v3, and iBOT, each offering distinct semantic and contextual priors. Rather than naively averaging teacher outputs, we apply asymmetric masking: the student sees only 25 percent of patches while each teacher receives a progressively lighter, unique mask, forcing the student to interpolate missing features under richer contexts. Teacher embeddings are aligned to the student's space via a linear adapter and layer normalization, then fused through our joint consensus gating, which weights each token by combining cosine affinity with inter-teacher agreement. The student is trained with dual-level KL divergence on visible tokens and reconstructed feature maps, capturing both local and global structure. On ImageNet-1K, CoMAD's ViT-Tiny achieves 75.4 percent Top-1, an increment of 0.4 percent over the previous state-of-the-art. In dense-prediction transfers, it attains 47.3 percent mIoU on ADE20K, and 44.5 percent box average precision and 40.5 percent mask average precision on MS-COCO, establishing a new state-of-the-art in compact SSL distillation.
Abstract:Few-shot adaptation remains a core challenge for vision-language models (VLMs), especially under limited supervision and noisy support samples. We propose PromptFuseNL, a unified framework that enhances few-shot generalization by combining predictive prompt tuning with dual-branch positive and negative learning. The method refines class prototypes through task-conditioned residuals, multi-stage cross-modal coordination, and semantic hard negative mining. To address label noise, we introduce an unsupervised instance reweighting strategy that downweights unreliable support examples without requiring additional labels or structural changes. PromptFuseNL fuses visual and textual cues through lightweight modules for efficient and discriminative prediction. Evaluated across 15 benchmarks, it consistently surpasses existing prompt- and adapter-based methods in all shot settings while remaining highly efficient, achieving up to 300x faster training and 1000x lower FLOPs compared to full prompt tuning, achieving a new state-of-the-art for robust and scalable few-shot vision-language adaptation.
Abstract:Continual Learning entails progressively acquiring knowledge from new data while retaining previously acquired knowledge, thereby mitigating ``Catastrophic Forgetting'' in neural networks. Our work presents a novel uncertainty-driven Unsupervised Continual Learning framework using Generative Replay, namely ``Replay to Remember (R2R)''. The proposed R2R architecture efficiently uses unlabelled and synthetic labelled data in a balanced proportion using a cluster-level uncertainty-driven feedback mechanism and a VLM-powered generative replay module. Unlike traditional memory-buffer methods that depend on pretrained models and pseudo-labels, our R2R framework operates without any prior training. It leverages visual features from unlabeled data and adapts continuously using clustering-based uncertainty estimation coupled with dynamic thresholding. Concurrently, a generative replay mechanism along with DeepSeek-R1 powered CLIP VLM produces labelled synthetic data representative of past experiences, resembling biological visual thinking that replays memory to remember and act in new, unseen tasks. Extensive experimental analyses are carried out in CIFAR-10, CIFAR-100, CINIC-10, SVHN and TinyImageNet datasets. Our proposed R2R approach improves knowledge retention, achieving a state-of-the-art performance of 98.13%, 73.06%, 93.41%, 95.18%, 59.74%, respectively, surpassing state-of-the-art performance by over 4.36%.
Abstract:Driving scene understanding is a critical real-world problem that involves interpreting and associating various elements of a driving environment, such as vehicles, pedestrians, and traffic signals. Despite advancements in autonomous driving, traditional pipelines rely on deterministic models that fail to capture the probabilistic nature and inherent uncertainty of real-world driving. To address this, we propose PRIMEDrive-CoT, a novel uncertainty-aware model for object interaction and Chain-of-Thought (CoT) reasoning in driving scenarios. In particular, our approach combines LiDAR-based 3D object detection with multi-view RGB references to ensure interpretable and reliable scene understanding. Uncertainty and risk assessment, along with object interactions, are modelled using Bayesian Graph Neural Networks (BGNNs) for probabilistic reasoning under ambiguous conditions. Interpretable decisions are facilitated through CoT reasoning, leveraging object dynamics and contextual cues, while Grad-CAM visualizations highlight attention regions. Extensive evaluations on the DriveCoT dataset demonstrate that PRIMEDrive-CoT outperforms state-of-the-art CoT and risk-aware models.
Abstract:Most of the sophisticated AI models utilize huge amounts of annotated data and heavy training to achieve high-end performance. However, there are certain challenges that hinder the deployment of AI models "in-the-wild" scenarios, i.e., inefficient use of unlabeled data, lack of incorporation of human expertise, and lack of interpretation of the results. To mitigate these challenges, we propose a novel Explainable Active Learning (XAL) model, XAL-based semantic segmentation model "SegXAL", that can (i) effectively utilize the unlabeled data, (ii) facilitate the "Human-in-the-loop" paradigm, and (iii) augment the model decisions in an interpretable way. In particular, we investigate the application of the SegXAL model for semantic segmentation in driving scene scenarios. The SegXAL model proposes the image regions that require labeling assistance from Oracle by dint of explainable AI (XAI) and uncertainty measures in a weakly-supervised manner. Specifically, we propose a novel Proximity-aware Explainable-AI (PAE) module and Entropy-based Uncertainty (EBU) module to get an Explainable Error Mask, which enables the machine teachers/human experts to provide intuitive reasoning behind the results and to solicit feedback to the AI system via an active learning strategy. Such a mechanism bridges the semantic gap between man and machine through collaborative intelligence, where humans and AI actively enhance each other's complementary strengths. A novel high-confidence sample selection technique based on the DICE similarity coefficient is also presented within the SegXAL framework. Extensive quantitative and qualitative analyses are carried out in the benchmarking Cityscape dataset. Results show the outperformance of our proposed SegXAL against other state-of-the-art models.