Abstract:Numerous self-supervised learning paradigms, such as contrastive learning and masked image modeling, learn powerful representations from unlabeled data but are typically pretrained in isolation, overlooking complementary insights and yielding large models that are impractical for resource-constrained deployment. To overcome these challenges, we introduce Consensus-oriented Masked Distillation (CoMAD), a lightweight, parameter-free framework that unifies knowledge from multiple current state-of-the-art self-supervised Vision Transformers into a compact student network. CoMAD distills from three pretrained ViT-Base teachers, MAE, MoCo v3, and iBOT, each offering distinct semantic and contextual priors. Rather than naively averaging teacher outputs, we apply asymmetric masking: the student sees only 25 percent of patches while each teacher receives a progressively lighter, unique mask, forcing the student to interpolate missing features under richer contexts. Teacher embeddings are aligned to the student's space via a linear adapter and layer normalization, then fused through our joint consensus gating, which weights each token by combining cosine affinity with inter-teacher agreement. The student is trained with dual-level KL divergence on visible tokens and reconstructed feature maps, capturing both local and global structure. On ImageNet-1K, CoMAD's ViT-Tiny achieves 75.4 percent Top-1, an increment of 0.4 percent over the previous state-of-the-art. In dense-prediction transfers, it attains 47.3 percent mIoU on ADE20K, and 44.5 percent box average precision and 40.5 percent mask average precision on MS-COCO, establishing a new state-of-the-art in compact SSL distillation.
Abstract:Driving scene understanding is a critical real-world problem that involves interpreting and associating various elements of a driving environment, such as vehicles, pedestrians, and traffic signals. Despite advancements in autonomous driving, traditional pipelines rely on deterministic models that fail to capture the probabilistic nature and inherent uncertainty of real-world driving. To address this, we propose PRIMEDrive-CoT, a novel uncertainty-aware model for object interaction and Chain-of-Thought (CoT) reasoning in driving scenarios. In particular, our approach combines LiDAR-based 3D object detection with multi-view RGB references to ensure interpretable and reliable scene understanding. Uncertainty and risk assessment, along with object interactions, are modelled using Bayesian Graph Neural Networks (BGNNs) for probabilistic reasoning under ambiguous conditions. Interpretable decisions are facilitated through CoT reasoning, leveraging object dynamics and contextual cues, while Grad-CAM visualizations highlight attention regions. Extensive evaluations on the DriveCoT dataset demonstrate that PRIMEDrive-CoT outperforms state-of-the-art CoT and risk-aware models.