Abstract:Image enhancement is a critical task in computer vision and photography that is often entangled with noise. This renders the traditional Image Signal Processing (ISP) ineffective compared to the advances in deep learning. However, the success of such methods is increasingly associated with the ease of their deployment on edge devices, such as smartphones. This work presents a novel mobile-friendly network for image de-noising obtained with Entropy-Regularized differentiable Neural Architecture Search (NAS) on a hardware-aware search space for a U-Net architecture, which is first-of-its-kind. The designed model has 12% less parameters, with ~2-fold improvement in ondevice latency and 1.5-fold improvement in the memory footprint for a 0.7% drop in PSNR, when deployed and profiled on Samsung Galaxy S24 Ultra. Compared to the SOTA Swin-Transformer for Image Restoration, the proposed network had competitive accuracy with ~18-fold reduction in GMACs. Further, the network was tested successfully for Gaussian de-noising with 3 intensities on 4 benchmarks and real-world de-noising on 1 benchmark demonstrating its generalization ability.
Abstract:Image deblurring is a critical stage in mobile image signal processing pipelines, where the ability to restore fine structures and textures must be balanced with real-time constraints on edge devices. While recent deep networks such as transformers and activation-free architectures achieve state-of-the-art (SOTA) accuracy, their efficiency is typically measured in FLOPs or parameters, which do not correlate with latency on embedded hardware. We propose a hardware-aware adaptation framework that restructures existing models through sensitivity-guided block substitution, surrogate distillation, and training-free multi-objective search driven by device profiling. Applied to the 36-block NAFNet baseline, the optimized variants achieve up to 55% reduction in GMACs compared to the recent transformer-based SOTA while maintaining competitive accuracy. Most importantly, on-device deployment yields a 1.25X latency improvement over the baseline. Experiments on motion deblurring (GoPro), defocus deblurring (DPDD), and auxiliary benchmarks (RealBlur-J/R, HIDE) demonstrate the generality of the approach, while comparisons with prior efficient baselines confirm its accuracy-efficiency trade-off. These results establish feedback-driven adaptation as a principled strategy for bridging the gap between algorithmic design and deployment-ready deblurring models.