Abstract:Understanding how anatomical shapes evolve in response to developmental covariates and quantifying their spatially varying uncertainties is critical in healthcare research. Existing approaches typically rely on global time-warping formulations that ignore spatially heterogeneous dynamics. We introduce PRISM, a novel framework that bridges implicit neural representations with uncertainty-aware statistical shape analysis. PRISM models the conditional distribution of shapes given covariates, providing spatially continuous estimates of both the population mean and covariate-dependent uncertainty at arbitrary locations. A key theoretical contribution is a closed-form Fisher Information metric that enables efficient, analytically tractable local temporal uncertainty quantification via automatic differentiation. Experiments on three synthetic datasets and one clinical dataset demonstrate PRISM's strong performance across diverse tasks within a unified framework, while providing interpretable and clinically meaningful uncertainty estimates.
Abstract:The goal of this work is to develop principled techniques to extract information from high dimensional data sets with complex dependencies in areas such as medicine that can provide insight into individual as well as population level variation. We develop $\texttt{LucidAtlas}$, an approach that can represent spatially varying information, and can capture the influence of covariates as well as population uncertainty. As a versatile atlas representation, $\texttt{LucidAtlas}$ offers robust capabilities for covariate interpretation, individualized prediction, population trend analysis, and uncertainty estimation, with the flexibility to incorporate prior knowledge. Additionally, we discuss the trustworthiness and potential risks of neural additive models for analyzing dependent covariates and then introduce a marginalization approach to explain the dependence of an individual predictor on the models' response (the atlas). To validate our method, we demonstrate its generalizability on two medical datasets. Our findings underscore the critical role of by-construction interpretable models in advancing scientific discovery. Our code will be publicly available upon acceptance.