Abstract:In the classic expert problem, $\Phi$-regret measures the gap between the learner's total loss and that achieved by applying the best action transformation $\phi \in \Phi$. A recent work by Lu et al., [2025] introduces an adaptive algorithm whose regret against a comparator $\phi$ depends on a certain sparsity-based complexity measure of $\phi$, (almost) recovering and interpolating optimal bounds for standard regret notions such as external, internal, and swap regret. In this work, we propose a general idea to achieve an even better comparator-adaptive $\Phi$-regret bound via much simpler algorithms compared to Lu et al., [2025]. Specifically, we discover a prior distribution over all possible binary transformations and show that it suffices to achieve prior-dependent regret against these transformations. Then, we propose two concrete and efficient algorithms to achieve so, where the first one learns over multiple copies of a prior-aware variant of the Kernelized MWU algorithm of Farina et al., [2022], and the second one learns over multiple copies of a prior-aware variant of the BM-reduction [Blum and Mansour, 2007]. To further showcase the power of our methods and the advantages over Lu et al., [2025] besides the simplicity and better regret bounds, we also show that our second approach can be extended to the game setting to achieve accelerated and adaptive convergence rate to $\Phi$-equilibria for a class of general-sum games. When specified to the special case of correlated equilibria, our bound improves over the existing ones from Anagnostides et al., [2022a,b]
Abstract:Motivated by alternating learning dynamics in two-player games, a recent work by Cevher et al.(2024) shows that $o(\sqrt{T})$ alternating regret is possible for any $T$-round adversarial Online Linear Optimization (OLO) problem, and left as an open question whether the same is true for general Online Convex Optimization (OCO). We answer this question in the affirmative by showing that the continuous Hedge algorithm achieves $\tilde{\mathcal{O}}(d^{\frac{2}{3}}T^{\frac{1}{3}})$ alternating regret for any adversarial $d$-dimensional OCO problems. We show that this implies an alternating learning dynamic that finds a Nash equilibrium for any convex-concave zero-sum games or a coarse correlated equilibrium for any convex two-player general-sum games at a rate of $\tilde{\mathcal{O}}(d^{\frac{2}{3}}/T^{\frac{2}{3}})$. To further improve the time complexity and/or the dimension dependence, we propose another simple algorithm, Follow-the-Regularized-Leader with a regularizer whose convex conjugate is 3rd-order smooth, for OCO with smooth and self-concordant loss functions (such as linear or quadratic losses). We instantiate our algorithm with different regularizers and show that, for example, when the decision set is the $\ell_2$ ball, our algorithm achieves $\tilde{\mathcal{O}}(T^{\frac{2}{5}})$ alternating regret with no dimension dependence (and a better $\tilde{\mathcal{O}}(T^{\frac{1}{3}})$ bound for quadratic losses). We complement our results by showing some algorithm-specific alternating regret lower bounds, including a somewhat surprising $\Omega(\sqrt{T})$ lower bound for a Regret Matching variant that is widely used in alternating learning dynamics.