Abstract:Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
Abstract:Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker. Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks. We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training to perturb the source speech timbre, mitigating leakage and aligning training with inference. Additionally, we employ a diffusion transformer that leverages the entire reference speech context, capturing fine-grained timbre features through in-context learning. Experiments demonstrate that Seed-VC outperforms strong baselines like OpenVoice and CosyVoice, achieving higher speaker similarity and lower word error rates in zero-shot voice conversion tasks. We further extend our approach to zero-shot singing voice conversion by incorporating fundamental frequency (F0) conditioning, resulting in comparative performance to current state-of-the-art methods. Our findings highlight the effectiveness of Seed-VC in overcoming core challenges, paving the way for more accurate and versatile voice conversion systems.