Asian Development Bank, Philippines
Abstract:Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
Abstract:Gait and movement analysis have become a well-established clinical tool for diagnosing health conditions, monitoring disease progression for a wide spectrum of diseases, and to implement and assess treatment, surgery and or rehabilitation interventions. However, quantitative motion assessment remains limited to costly motion capture systems and specialized personnel, restricting its accessibility and broader application. Recent advancements in deep neural networks have enabled quantitative movement analysis using single-camera videos, offering an accessible alternative to conventional motion capture systems. In this paper, we present an efficient approach for clinical gait analysis through a dual-pattern input convolutional Transformer network. The proposed system leverages a dual-input Transformer model to estimate essential gait parameters from single RGB videos captured by a single-view camera. The system demonstrates high accuracy in estimating critical metrics such as the gait deviation index (GDI), knee flexion angle, step length, and walking cadence, validated on a dataset of individuals with movement disorders. Notably, our approach surpasses state-of-the-art methods in various scenarios, using fewer resources and proving highly suitable for clinical application, particularly in resource-constrained environments.