Abstract:Improving end-users' understanding of decisions made by autonomous vehicles (AVs) driven by artificial intelligence (AI) can improve utilization and acceptance of AVs. However, current explanation mechanisms primarily help AI researchers and engineers in debugging and monitoring their AI systems, and may not address the specific questions of end-users, such as passengers, about AVs in various scenarios. In this paper, we conducted two user studies to investigate questions that potential AV passengers might pose while riding in an AV and evaluate how well answers to those questions improve their understanding of AI-driven AV decisions. Our initial formative study identified a range of questions about AI in autonomous driving that existing explanation mechanisms do not readily address. Our second study demonstrated that interactive text-based explanations effectively improved participants' comprehension of AV decisions compared to simply observing AV decisions. These findings inform the design of interactions that motivate end-users to engage with and inquire about the reasoning behind AI-driven AV decisions.
Abstract:Advances in language modeling have paved the way for novel human-AI co-writing experiences. This paper explores how varying levels of scaffolding from large language models (LLMs) shape the co-writing process. Employing a within-subjects field experiment with a Latin square design, we asked participants (N=131) to respond to argumentative writing prompts under three randomly sequenced conditions: no AI assistance (control), next-sentence suggestions (low scaffolding), and next-paragraph suggestions (high scaffolding). Our findings reveal a U-shaped impact of scaffolding on writing quality and productivity (words/time). While low scaffolding did not significantly improve writing quality or productivity, high scaffolding led to significant improvements, especially benefiting non-regular writers and less tech-savvy users. No significant cognitive burden was observed while using the scaffolded writing tools, but a moderate decrease in text ownership and satisfaction was noted. Our results have broad implications for the design of AI-powered writing tools, including the need for personalized scaffolding mechanisms.