Abstract:Object detection models typically rely on predefined categories, limiting their ability to identify novel objects in open-world scenarios. To overcome this constraint, we introduce ADAM: Autonomous Discovery and Annotation Model, a training-free, self-refining framework for open-world object labeling. ADAM leverages large language models (LLMs) to generate candidate labels for unknown objects based on contextual information from known entities within a scene. These labels are paired with visual embeddings from CLIP to construct an Embedding-Label Repository (ELR) that enables inference without category supervision. For a newly encountered unknown object, ADAM retrieves visually similar instances from the ELR and applies frequency-based voting and cross-modal re-ranking to assign a robust label. To further enhance consistency, we introduce a self-refinement loop that re-evaluates repository labels using visual cohesion analysis and k-nearest-neighbor-based majority re-labeling. Experimental results on the COCO and PASCAL datasets demonstrate that ADAM effectively annotates novel categories using only visual and contextual signals, without requiring any fine-tuning or retraining.
Abstract:A major obstacle to the development of effective monocular depth estimation algorithms is the difficulty in obtaining high-quality depth data that corresponds to collected RGB images. Collecting this data is time-consuming and costly, and even data collected by modern sensors has limited range or resolution, and is subject to inconsistencies and noise. To combat this, we propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer. We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data. We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.