Abstract:Device-free crowd-counting using WiFi Channel State Information (CSI) is a key enabling technology for a new generation of privacy-preserving Internet of Things (IoT) applications. However, practical deployment is severely hampered by the domain shift problem, where models trained in one environment fail to generalise to another. To overcome this, we propose a novel two-stage framework centred on a CSI-ResNet-A architecture. This model is pre-trained via self-supervised contrastive learning to learn domain-invariant representations and leverages lightweight Adapter modules for highly efficient fine-tuning. The resulting event sequence is then processed by a stateful counting machine to produce a final, stable occupancy estimate. We validate our framework extensively. On our WiFlow dataset, our unsupervised approach excels in a 10-shot learning scenario, achieving a final Mean Absolute Error (MAE) of just 0.44--a task where supervised baselines fail. To formally quantify robustness, we introduce the Generalisation Index (GI), on which our model scores near-perfectly, confirming its ability to generalise. Furthermore, our framework sets a new state-of-the-art public WiAR benchmark with 98.8\% accuracy. Our ablation studies reveal the core strength of our design: adapter-based fine-tuning achieves performance within 1\% of a full fine-tune (98.84\% vs. 99.67\%) while training 97.2\% fewer parameters. Our work provides a practical and scalable solution for developing robust sensing systems ready for real-world IoT deployments.
Abstract:WiFi Channel State Information (CSI) has shown promise for single-person gait identification, with numerous studies reporting high accuracy. However, multi-person identification remains largely unexplored, with the limited existing work relying on complex, expensive setups requiring modified firmware. A critical question remains unanswered: is poor multi-person performance an algorithmic limitation or a fundamental hardware constraint? We systematically evaluate six diverse signal separation methods (FastICA, SOBI, PCA, NMF, Wavelet, Tensor Decomposition) across seven scenarios with 1-10 people using commodity ESP32 WiFi sensors--a simple, low-cost, off-the-shelf solution. Through novel diagnostic metrics (intra-subject variability, inter-subject distinguishability, performance degradation rate), we reveal that all methods achieve similarly low accuracy (45-56\%, $σ$=3.74\%) with statistically insignificant differences (p $>$ 0.05). Even the best-performing method, NMF, achieves only 56\% accuracy. Our analysis reveals high intra-subject variability, low inter-subject distinguishability, and severe performance degradation as person count increases, indicating that commodity ESP32 sensors cannot provide sufficient signal quality for reliable multi-person separation.
Abstract:Safety critical software assessment requires robust assessment against complex regulatory frameworks, a process traditionally limited by manual evaluation. This paper presents Document Retrieval-Augmented Fine-Tuning (DRAFT), a novel approach that enhances the capabilities of a large language model (LLM) for safety-critical compliance assessment. DRAFT builds upon existing Retrieval-Augmented Generation (RAG) techniques by introducing a novel fine-tuning framework that accommodates our dual-retrieval architecture, which simultaneously accesses both software documentation and applicable reference standards. To fine-tune DRAFT, we develop a semi-automated dataset generation methodology that incorporates variable numbers of relevant documents with meaningful distractors, closely mirroring real-world assessment scenarios. Experiments with GPT-4o-mini demonstrate a 7% improvement in correctness over the baseline model, with qualitative improvements in evidence handling, response structure, and domain-specific reasoning. DRAFT represents a practical approach to improving compliance assessment systems while maintaining the transparency and evidence-based reasoning essential in regulatory domains.
Abstract:Operational Technology Cybersecurity (OTCS) continues to be a dominant challenge for critical infrastructure such as railways. As these systems become increasingly vulnerable to malicious attacks due to digitalization, effective documentation and compliance processes are essential to protect these safety-critical systems. This paper proposes a novel system that leverages Large Language Models (LLMs) and multi-stage retrieval to enhance the compliance verification process against standards like IEC 62443 and the rail-specific IEC 63452. We first evaluate a Baseline Compliance Architecture (BCA) for answering OTCS compliance queries, then develop an extended approach called Parallel Compliance Architecture (PCA) that incorporates additional context from regulatory standards. Through empirical evaluation comparing OpenAI-gpt-4o and Claude-3.5-haiku models in these architectures, we demonstrate that the PCA significantly improves both correctness and reasoning quality in compliance verification. Our research establishes metrics for response correctness, logical reasoning, and hallucination detection, highlighting the strengths and limitations of using LLMs for compliance verification in railway cybersecurity. The results suggest that retrieval-augmented approaches can significantly improve the efficiency and accuracy of compliance assessments, particularly valuable in an industry facing a shortage of cybersecurity expertise.