Abstract:Mainstream Visual-inertial odometry (VIO) systems rely on point features for motion estimation and localization. However, their performance degrades in challenging scenarios. Moreover, the localization accuracy of multi-state constraint Kalman filter (MSCKF)-based VIO systems suffers from linearization errors associated with feature 3D coordinates and delayed measurement updates. To improve the performance of VIO in challenging scenes, we first propose a pose-only geometric representation for line features. Building on this, we develop POPL-KF, a Kalman filter-based VIO system that employs a pose-only geometric representation for both point and line features. POPL-KF mitigates linearization errors by explicitly eliminating both point and line feature coordinates from the measurement equations, while enabling immediate update of visual measurements. We also design a unified base-frames selection algorithm for both point and line features to ensure optimal constraints on camera poses within the pose-only measurement model. To further improve line feature quality, a line feature filter based on image grid segmentation and bidirectional optical flow consistency is proposed. Our system is evaluated on public datasets and real-world experiments, demonstrating that POPL-KF outperforms the state-of-the-art (SOTA) filter-based methods (OpenVINS, PO-KF) and optimization-based methods (PL-VINS, EPLF-VINS), while maintaining real-time performance.