Abstract:End-to-end autonomous driving is increasingly adopting a multimodal planning paradigm that generates multiple trajectory candidates and selects the final plan, making candidate-set design critical. A fixed trajectory vocabulary provides stable coverage in routine driving but often misses optimal solutions in complex interactions, while scene-adaptive refinement can cause over-correction in simple scenarios by unnecessarily perturbing already strong vocabulary trajectories.We propose CdDrive, which preserves the original vocabulary candidates and augments them with scene-adaptive candidates generated by vocabulary-conditioned diffusion denoising. Both candidate types are jointly scored by a shared selection module, enabling reliable performance across routine and highly interactive scenarios. We further introduce HATNA (Horizon-Aware Trajectory Noise Adapter) to improve the smoothness and geometric continuity of diffusion candidates via temporal smoothing and horizon-aware noise modulation. Experiments on NAVSIM v1 and NAVSIM v2 demonstrate leading performance, and ablations verify the contribution of each component.