Abstract:Deterministic pseudo random number generators (PRNGs) used in generative artificial intelligence (GAI) models produce predictable patterns vulnerable to exploitation by attackers. Conventional defences against the vulnerabilities often come with significant energy and latency overhead. Here, we embed hardware-generated true random bits from spin-transfer torque magnetic tunnel junctions (STT-MTJs) to address the challenges. A highly parallel, FPGA-assisted prototype computing system delivers megabit-per-second true random numbers, passing NIST randomness tests after in-situ operations with minimal overhead. Integrating the hardware random bits into a generative adversarial network (GAN) trained on CIFAR-10 reduces insecure outputs by up to 18.6 times compared to the low-quality random number generators (RNG) baseline. With nanosecond switching speed, high energy efficiency, and established scalability, our STT-MTJ-based system holds the potential to scale beyond 106 parallel cells, achieving gigabit-per-second throughput suitable for large language model sampling. This advancement highlights spintronic RNGs as practical security components for next-generation GAI systems.
Abstract:Embodied Intelligence (EI) systems integrated with large language models (LLMs) face significant security risks, particularly from jailbreak attacks that manipulate models into generating harmful outputs or executing unsafe physical actions. Traditional defense strategies, such as input filtering and output monitoring, often introduce high computational overhead or interfere with task performance in real-time embodied scenarios. To address these challenges, we propose Concept Enhancement Engineering (CEE), a novel defense framework that leverages representation engineering to enhance the safety of embodied LLMs by dynamically steering their internal activations. CEE operates by (1) extracting multilingual safety patterns from model activations, (2) constructing control directions based on safety-aligned concept subspaces, and (3) applying subspace concept rotation to reinforce safe behavior during inference. Our experiments demonstrate that CEE effectively mitigates jailbreak attacks while maintaining task performance, outperforming existing defense methods in both robustness and efficiency. This work contributes a scalable and interpretable safety mechanism for embodied AI, bridging the gap between theoretical representation engineering and practical security applications. Our findings highlight the potential of latent-space interventions as a viable defense paradigm against emerging adversarial threats in physically grounded AI systems.