Abstract:Large Language Models have shown remarkable capabilities in the NLP domain. Their effectiveness can mainly be attributed to their ability to adapt to an array of downstream tasks. However, generally, full fine-tuning is a computationally expensive job. To mitigate this, many techniques have been developed that prime efficiency, a prominent one being Low-Rank Adaptation (LoRA). However, LoRA and its variants employ re-parametrized additive updates. In this paper, we propose Low-Rank Multiplicative Adaptation (LoRMA), which shifts the paradigm of additive updates to a richer space of matrix multiplicative transformations. We tackle challenges such as computational complexity and rank bottleneck of matrix multiplication by effectively re-ordering operations and introducing rank inflation strategies. We conduct extensive experiments to demonstrate the effectiveness of our approach in terms of various evaluation metrics.
Abstract:This paper presents our approach for the SemEval-2024 Task 10: Emotion Discovery and Reasoning its Flip in Conversations. For the Emotion Recognition in Conversations (ERC) task, we utilize a masked-memory network along with speaker participation. We propose a transformer-based speaker-centric model for the Emotion Flip Reasoning (EFR) task. We also introduce Probable Trigger Zone, a region of the conversation that is more likely to contain the utterances causing the emotion to flip. For sub-task 3, the proposed approach achieves a 5.9 (F1 score) improvement over the task baseline. The ablation study results highlight the significance of various design choices in the proposed method.