Abstract:We study A/B experiments that are designed to compare the performance of two recommendation algorithms. Prior work has shown that the standard difference-in-means estimator is biased in estimating the global treatment effect (GTE) due to a particular form of interference between experimental units. Specifically, units under the treatment and control algorithms contribute to a shared pool of data that subsequently train both algorithms, resulting in interference between the two groups. The bias arising from this type of data sharing is known as "symbiosis bias". In this paper, we highlight that, for decision-making purposes, the sign of the GTE often matters more than its precise magnitude when selecting the better algorithm. We formalize this insight under a multi-armed bandit framework and theoretically characterize when the sign of the expected GTE estimate under data sharing aligns with or contradicts the sign of the true GTE. Our analysis identifies the level of exploration versus exploitation as a key determinant of how symbiosis bias impacts algorithm selection.
Abstract:Mobile health aims to enhance health outcomes by delivering interventions to individuals as they go about their daily life. The involvement of care partners and social support networks often proves crucial in helping individuals managing burdensome medical conditions. This presents opportunities in mobile health to design interventions that target the dyadic relationship -- the relationship between a target person and their care partner -- with the aim of enhancing social support. In this paper, we develop dyadic RL, an online reinforcement learning algorithm designed to personalize intervention delivery based on contextual factors and past responses of a target person and their care partner. Here, multiple sets of interventions impact the dyad across multiple time intervals. The developed dyadic RL is Bayesian and hierarchical. We formally introduce the problem setup, develop dyadic RL and establish a regret bound. We demonstrate dyadic RL's empirical performance through simulation studies on both toy scenarios and on a realistic test bed constructed from data collected in a mobile health study.