Abstract:As organizations scale adoption of generative AI, model cost optimization and operational efficiency have emerged as critical factors determining sustainability and accessibility. While Large Language Models (LLMs) demonstrate impressive capabilities across diverse tasks, their extensive computational requirements make them cost-prohibitive for routine enterprise use. This limitation motivates the exploration of Small Language Models (SLMs), which can deliver comparable performance in targeted applications while drastically reducing infrastructure overhead (Irugalbandara et al., 2023). In this work, we investigate the feasibility of replacing LLM-driven workflows with optimized SLMs. We trained a domain-adapted SLM to execute representative tasks traditionally handled by LLMs, such as document summarization, query answering, and structured data interpretation. As part of the experiment, we investigated the fine-tuning of facebook/opt-350m model (single epoch only) using the Hugging Face TRL (Transformer Reinforcement Learning), specifically the Supervised Fine-Tuning (SFT) trainer. The OPT-350M model was released by Meta AI in 2022 as part of the OPT (Open Pretrained Transformer) family of models. Similar studies demonstrate that even models at the 350M parameter scale can meaningfully contribute to instruction-tuning pipelines (Mekala et al., 2024). Experimental results demonstrated that our fine-tuned SLM achieves exceptional performance with a 77.55\% pass rate on ToolBench evaluation, significantly outperforming all baseline models including ChatGPT-CoT (26.00\%), ToolLLaMA-DFS (30.18\%), and ToolLLaMA-CoT (16.27\%). These findings emphasize that thoughtful design and targeted training of SLMs can significantly lower barriers to adoption, enabling cost-effective, large-scale integration of generative AI into production systems.
Abstract:Despite significant advances in optimizers for training, most research works use common scheduler choices like Cosine or exponential decay. In this paper, we study \emph{GreedyLR}, a novel scheduler that adaptively adjusts the learning rate during training based on the current loss. To validate the effectiveness of our proposed scheduler, we conduct experiments on several NLP, CV, and LLM tasks with up to $7B$ parameters, including both fine-tuning and pre-training experiments. The results show that our approach outperforms several state-of-the-art schedulers in terms of accuracy, speed, and convergence. We also provide a theoretical analysis of the GreedyLR algorithm, including a proof of convergence and derivation of the optimal scaling factor $F$ that maximizes the convergence rate, along with experiments to show robustness of the algorithm to realistic noisy landscapes. Our scheduler is easy to implement, computationally efficient, and could be considered a good default scheduler for training.
Abstract:Financial AI systems suffer from a critical blind spot: while Retrieval-Augmented Generation (RAG) excels at finding relevant documents, language models still generate calculation errors and regulatory violations during reasoning, even with perfect retrieval. This paper introduces VERAFI (Verified Agentic Financial Intelligence), an agentic framework with neurosymbolic policy generation for verified financial intelligence. VERAFI combines state-of-the-art dense retrieval and cross-encoder reranking with financial tool-enabled agents and automated reasoning policies covering GAAP compliance, SEC requirements, and mathematical validation. Our comprehensive evaluation on FinanceBench demonstrates remarkable improvements: while traditional dense retrieval with reranking achieves only 52.4\% factual correctness, VERAFI's integrated approach reaches 94.7\%, an 81\% relative improvement. The neurosymbolic policy layer alone contributes a 4.3 percentage point gain over pure agentic processing, specifically targeting persistent mathematical and logical errors. By integrating financial domain expertise directly into the reasoning process, VERAFI offers a practical pathway toward trustworthy financial AI that meets the stringent accuracy demands of regulatory compliance, investment decisions, and risk management.




Abstract:As foundation AI models continue to increase in size, an important question arises - is massive scale the only path forward? This survey of about 160 papers presents a family of Small Language Models (SLMs) in the 1 to 8 billion parameter range that demonstrate smaller models can perform as well, or even outperform large models. We explore task agnostic, general purpose SLMs, task-specific SLMs and techniques to create SLMs that can guide the community to build models while balancing performance, efficiency, scalability and cost. Furthermore we define and characterize SLMs' effective sizes, representing increased capability with respect to LLMs.