Abstract:Sycophancy is a key behavioral risk in LLMs, yet is often treated as an isolated failure mode that occurs via a single causal mechanism. We instead propose modeling it as geometric and causal compositions of psychometric traits such as emotionality, openness, and agreeableness - similar to factor decomposition in psychometrics. Using Contrastive Activation Addition (CAA), we map activation directions to these factors and study how different combinations may give rise to sycophancy (e.g., high extraversion combined with low conscientiousness). This perspective allows for interpretable and compositional vector-based interventions like addition, subtraction and projection; that may be used to mitigate safety-critical behaviors in LLMs.
Abstract:Shadow removal and segmentation remain challenging tasks in computer vision, particularly in complex real-world scenarios. This study presents a novel approach that enhances the ShadowFormer model by incorporating Masked Autoencoder (MAE) priors and Fast Fourier Convolution (FFC) blocks, leading to significantly faster convergence and improved performance. We introduce key innovations: (1) integration of MAE priors trained on Places2 dataset for better context understanding, (2) adoption of Haar wavelet features for enhanced edge detection and multi-scale analysis, and (3) implementation of a modified SAM Adapter for robust shadow segmentation. Extensive experiments on the challenging DESOBA dataset demonstrate that our approach achieves state-of-the-art results, with notable improvements in both convergence speed and shadow removal quality.