Abstract:In this paper, we introduce a multi robot payload transport system to carry payloads through an environment of unknown and uneven inclinations while maintaining the desired orientation of the payload. For this task, we used custom built robots with a linear actuator (pistons) mounted on top of each robot. The system continuously monitors the payload's orientation and computes the required piston height of each robot to maintain the desired orientation of the payload. In this work, we propose an open loop controller coupled with a closed loop PID controller to achieve the goal. As our modelling makes no assumptions on the type of terrain, the system can work on any unknown and uneven terrains and inclinations. We showcase the efficacy of our proposed controller by testing it on various simulated environments with varied and complex terrains.




Abstract:In this work, we consider a multi-wheeled payload transport system. Each of the wheels can be selectively actuated. When they are not actuated, wheels are free moving and do not consume battery power. The payload transport system is modeled as an actuated multi-agent system, with each wheel-motor pair as an agent. Kinematic and dynamic models are developed to ensure that the payload transport system moves as desired. We design optimization formulations to decide on the number of wheels to be active and which of the wheels to be active so that the battery is conserved and the wear on the motors is reduced. Our multi-level control framework over the agents ensures that near-optimal number of agents is active for the payload transport system to function. Through simulation studies we show that our solution ensures energy efficient operation and increases the distance traveled by the payload transport system, for the same battery power. We have built the payload transport system and provide results for preliminary experimental validation.