Abstract:Large Language Model (LLM) Agents are advancing quickly, with the increasing leveraging of LLM Agents to assist in development tasks such as code generation. While LLM Agents accelerate code generation, studies indicate they may introduce adverse effects on development. However, existing metrics solely measure pass rates, failing to reflect impacts on long-term maintainability and readability, and failing to capture human intuitive evaluations of PR. To increase the comprehensiveness of this problem, we investigate and evaluate the characteristics of LLM to know the pull requests' characteristics beyond the pass rate. We observe the code quality and maintainability within PRs based on code metrics to evaluate objective characteristics and developers' reactions to the pull requests from both humans and LLM's generation. Evaluation results indicate that LLM Agents frequently disregard code reuse opportunities, resulting in higher levels of redundancy compared to human developers. In contrast to the quality issues, our emotions analysis reveals that reviewers tend to express more neutral or positive emotions towards AI-generated contributions than human ones. This disconnect suggests that the surface-level plausibility of AI code masks redundancy, leading to the silent accumulation of technical debt in real-world development environments. Our research provides insights for improving human-AI collaboration.
Abstract:From the perspective of future developments in robotics, it is crucial to verify whether foundation models trained exclusively on offline data, such as images and language, can understand the robot motion. In particular, since Vision Language Models (VLMs) do not include low-level motion information from robots in their training datasets, video understanding including trajectory information remains a significant challenge. In this study, we assess two capabilities of VLMs through a video captioning task with low-level robot motion information: (1) automatic captioning of robot tasks and (2) segmentation of a series of tasks. Both capabilities are expected to enhance the efficiency of robot imitation learning by linking language and motion and serve as a measure of the foundation model's performance. The proposed method generates multiple "scene" captions using image captions and trajectory data from robot tasks. The full task caption is then generated by summarizing these individual captions. Additionally, the method performs subtask segmentation by comparing the similarity between text embeddings of image captions. In both captioning tasks, the proposed method aims to improve performance by providing the robot's motion data - joint and end-effector states - as input to the VLM. Simulator experiments were conducted to validate the effectiveness of the proposed method.