Abstract:During times of crisis, social media platforms play a vital role in facilitating communication and coordinating resources. Amidst chaos and uncertainty, communities often rely on these platforms to share urgent pleas for help, extend support, and organize relief efforts. However, the sheer volume of conversations during such periods, which can escalate to unprecedented levels, necessitates the automated identification and matching of requests and offers to streamline relief operations. This study addresses the challenge of efficiently identifying and matching assistance requests and offers on social media platforms during emergencies. We propose CReMa (Crisis Response Matcher), a systematic approach that integrates textual, temporal, and spatial features for multi-lingual request-offer matching. By leveraging CrisisTransformers, a set of pre-trained models specific to crises, and a cross-lingual embedding space, our methodology enhances the identification and matching tasks while outperforming strong baselines such as RoBERTa, MPNet, and BERTweet, in classification tasks, and Universal Sentence Encoder, Sentence Transformers in crisis embeddings generation tasks. We introduce a novel multi-lingual dataset that simulates scenarios of help-seeking and offering assistance on social media across the 16 most commonly used languages in Australia. We conduct comprehensive cross-lingual experiments across these 16 languages, also while examining trade-offs between multiple vector search strategies and accuracy. Additionally, we analyze a million-scale geotagged global dataset to comprehend patterns in relation to seeking help and offering assistance on social media. Overall, these contributions advance the field of crisis informatics and provide benchmarks for future research in the area.
Abstract:Tasks such as semantic search and clustering on crisis-related social media texts enhance our comprehension of crisis discourse, aiding decision-making and targeted interventions. Pre-trained language models have advanced performance in crisis informatics, but their contextual embeddings lack semantic meaningfulness. Although the CrisisTransformers family includes a sentence encoder to address the semanticity issue, it remains monolingual, processing only English texts. Furthermore, employing separate models for different languages leads to embeddings in distinct vector spaces, introducing challenges when comparing semantic similarities between multi-lingual texts. Therefore, we propose multi-lingual sentence encoders (CT-XLMR-SE and CT-mBERT-SE) that embed crisis-related social media texts for over 50 languages, such that texts with similar meanings are in close proximity within the same vector space, irrespective of language diversity. Results in sentence encoding and sentence matching tasks are promising, suggesting these models could serve as robust baselines when embedding multi-lingual crisis-related social media texts. The models are publicly available at: https://huggingface.co/crisistransformers.
Abstract:An increasing number of related urban data sources have brought forth novel opportunities for learning urban region representations, i.e., embeddings. The embeddings describe latent features of urban regions and enable discovering similar regions for urban planning applications. Existing methods learn an embedding for a region using every different type of region feature data, and subsequently fuse all learned embeddings of a region to generate a unified region embedding. However, these studies often overlook the significance of the fusion process. The typical fusion methods rely on simple aggregation, such as summation and concatenation, thereby disregarding correlations within the fused region embeddings. To address this limitation, we propose a novel model named HAFusion. Our model is powered by a dual-feature attentive fusion module named DAFusion, which fuses embeddings from different region features to learn higher-order correlations between the regions as well as between the different types of region features. DAFusion is generic - it can be integrated into existing models to enhance their fusion process. Further, motivated by the effective fusion capability of an attentive module, we propose a hybrid attentive feature learning module named HALearning to enhance the embedding learning from each individual type of region features. Extensive experiments on three real-world datasets demonstrate that our model HAFusion outperforms state-of-the-art methods across three different prediction tasks. Using our learned region embedding leads to consistent and up to 31% improvements in the prediction accuracy.
Abstract:Social media platforms play an essential role in crisis communication, but analyzing crisis-related social media texts is challenging due to their informal nature. Transformer-based pre-trained models like BERT and RoBERTa have shown success in various NLP tasks, but they are not tailored for crisis-related texts. Furthermore, general-purpose sentence encoders are used to generate sentence embeddings, regardless of the textual complexities in crisis-related texts. Advances in applications like text classification, semantic search, and clustering contribute to effective processing of crisis-related texts, which is essential for emergency responders to gain a comprehensive view of a crisis event, whether historical or real-time. To address these gaps in crisis informatics literature, this study introduces CrisisTransformers, an ensemble of pre-trained language models and sentence encoders trained on an extensive corpus of over 15 billion word tokens from tweets associated with more than 30 crisis events, including disease outbreaks, natural disasters, conflicts, and other critical incidents. We evaluate existing models and CrisisTransformers on 18 crisis-specific public datasets. Our pre-trained models outperform strong baselines across all datasets in classification tasks, and our best-performing sentence encoder improves the state-of-the-art by 17.43% in sentence encoding tasks. Additionally, we investigate the impact of model initialization on convergence and evaluate the significance of domain-specific models in generating semantically meaningful sentence embeddings. All models are publicly released (https://huggingface.co/crisistransformers), with the anticipation that they will serve as a robust baseline for tasks involving the analysis of crisis-related social media texts.
Abstract:The emergence of social media as one of the main platforms for people to access news has enabled the wide dissemination of fake news. This has motivated numerous studies on automating fake news detection. Although there have been limited attempts at unsupervised fake news detection, their performance suffers due to not exploiting the knowledge from various modalities related to news records and due to the presence of various latent biases in the existing news datasets. To address these limitations, this work proposes an effective framework for unsupervised fake news detection, which first embeds the knowledge available in four modalities in news records and then proposes a novel noise-robust self-supervised learning technique to identify the veracity of news records from the multi-modal embeddings. Also, we propose a novel technique to construct news datasets minimizing the latent biases in existing news datasets. Following the proposed approach for dataset construction, we produce a Large-scale Unlabelled News Dataset consisting 419,351 news articles related to COVID-19, acronymed as LUND-COVID. We trained the proposed unsupervised framework using LUND-COVID to exploit the potential of large datasets, and evaluate it using a set of existing labelled datasets. Our results show that the proposed unsupervised framework largely outperforms existing unsupervised baselines for different tasks such as multi-modal fake news detection, fake news early detection and few-shot fake news detection, while yielding notable improvements for unseen domains during training.
Abstract:Developing an understanding of the public discourse on COVID-19 vaccination on social media is important not only for addressing the current COVID-19 pandemic, but also for future pathogen outbreaks. We examine a Twitter dataset containing 75 million English tweets discussing COVID-19 vaccination from March 2020 to March 2021. We train a stance detection algorithm using natural language processing (NLP) techniques to classify tweets as `anti-vax' or `pro-vax', and examine the main topics of discourse using topic modelling techniques. While pro-vax tweets (37 million) far outnumbered anti-vax tweets (10 million), a majority of tweets from both stances (63% anti-vax and 53% pro-vax tweets) came from dual-stance users who posted both pro- and anti-vax tweets during the observation period. Pro-vax tweets focused mostly on vaccine development, while anti-vax tweets covered a wide range of topics, some of which included genuine concerns, though there was a large dose of falsehoods. A number of topics were common to both stances, though pro- and anti-vax tweets discussed them from opposite viewpoints. Memes and jokes were amongst the most retweeted messages. Whereas concerns about polarisation and online prevalence of anti-vax discourse are unfounded, targeted countering of falsehoods is important.
Abstract:A key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news. However, neither the list of events nor the resolution of both event time and space is fixed or known beforehand. In this work, we propose an online spatio-temporal event detection system using social media that is able to detect events at different time and space resolutions. First, to address the challenge related to the unknown spatial resolution of events, a quad-tree method is exploited in order to split the geographical space into multiscale regions based on the density of social media data. Then, a statistical unsupervised approach is performed that involves Poisson distribution and a smoothing method for highlighting regions with unexpected density of social posts. Further, event duration is precisely estimated by merging events happening in the same region at consecutive time intervals. A post processing stage is introduced to filter out events that are spam, fake or wrong. Finally, we incorporate simple semantics by using social media entities to assess the integrity, and accuracy of detected events. The proposed method is evaluated using different social media datasets: Twitter and Flickr for different cities: Melbourne, London, Paris and New York. To verify the effectiveness of the proposed method, we compare our results with two baseline algorithms based on fixed split of geographical space and clustering method. For performance evaluation, we manually compute recall and precision. We also propose a new quality measure named strength index, which automatically measures how accurate the reported event is.
Abstract:With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains; and (2) introduces an unsupervised technique to select a set of unlabelled informative news records for manual labelling, which can be ultimately used to train a fake news detection model that performs well for many domains while minimizing the labelling cost. Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets, while yielding notable improvements for rarely-appearing domains in news datasets.
Abstract:Many learning tasks involve multi-modal data streams, where continuous data from different modes convey a comprehensive description about objects. A major challenge in this context is how to efficiently interpret multi-modal information in complex environments. This has motivated numerous studies on learning unsupervised representations from multi-modal data streams. These studies aim to understand higher-level contextual information (e.g., a Twitter message) by jointly learning embeddings for the lower-level semantic units in different modalities (e.g., text, user, and location of a Twitter message). However, these methods directly associate each low-level semantic unit with a continuous embedding vector, which results in high memory requirements. Hence, deploying and continuously learning such models in low-memory devices (e.g., mobile devices) becomes a problem. To address this problem, we present METEOR, a novel MEmory and Time Efficient Online Representation learning technique, which: (1) learns compact representations for multi-modal data by sharing parameters within semantically meaningful groups and preserves the domain-agnostic semantics; (2) can be accelerated using parallel processes to accommodate different stream rates while capturing the temporal changes of the units; and (3) can be easily extended to capture implicit/explicit external knowledge related to multi-modal data streams. We evaluate METEOR using two types of multi-modal data streams (i.e., social media streams and shopping transaction streams) to demonstrate its ability to adapt to different domains. Our results show that METEOR preserves the quality of the representations while reducing memory usage by around 80% compared to the conventional memory-intensive embeddings.
Abstract:Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society as a whole, remains a serious problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch, which would become prohibitively expensive in practice as the data volumes grow? We study the above questions on two datasets with thousands of labelled news, and our results show that: (1) GNNs can indeed achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset may perform poorly on new, unseen data, and direct incremental training cannot solve the problem. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs incrementally.