Abstract:This study presents an integrated modeling and optimization framework for a steam methane reforming (SMR) reactor, combining a mathematical model, artificial neural network (ANN)-based hybrid modeling, advanced multi-objective optimization (MOO) and multi-criteria decision-making (MCDM) techniques. A one-dimensional fixed-bed reactor model accounting for internal mass transfer resistance was employed to simulate reactor performance. To reduce the high computational cost of the mathematical model, a hybrid ANN surrogate was constructed, achieving a 93.8% reduction in average simulation time while maintaining high predictive accuracy. The hybrid model was then embedded into three MOO scenarios using the non-dominated sorting genetic algorithm II (NSGA-II) solver: 1) maximizing methane conversion and hydrogen output; 2) maximizing hydrogen output while minimizing carbon dioxide emissions; and 3) a combined three-objective case. The optimal trade-off solutions were further ranked and selected using two MCDM methods: technique for order of preference by similarity to ideal solution (TOPSIS) and simplified preference ranking on the basis of ideal-average distance (sPROBID). Optimal results include a methane conversion of 0.863 with 4.556 mol/s hydrogen output in the first case, and 0.988 methane conversion with 3.335 mol/s hydrogen and 0.781 mol/s carbon dioxide in the third. This comprehensive methodology offers a scalable and effective strategy for optimizing complex catalytic reactor systems with multiple, often conflicting, objectives.